【题目】某市“招手即停”公共汽车的票价按下列规则制定:5公里以内(含5公里),票价2元;5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,
(1)请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
(2)与在(5,10]内有且仅有1个公共点,求a范围.
科目:高中数学 来源: 题型:
【题目】设抛物线C:的焦点为F,抛物线上的点A到轴的距离等于.
(1)求抛物线C的方程;
(2)已知经过抛物线C的焦点F的直线与抛物线交于A,B两点,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】探究函数,上的最小值,并确定取得最小值时的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 14 | 7 | 5.34 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | … |
(1)观察表中值随值变化趋势特点,请你直接写出函数,的单调区间,并指出当取何值时函数的最小值为多少;
(2)用单调性定义证明函数在上的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若,且直线是曲线的一条切线,求实数的值;
(2)若不等式对任意恒成立,求的取值范围;
(3)若函数有两个极值点,,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.
(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人.
①记表示选取4人的成绩的平均数,求;
②记表示测试成绩在80分以上的人数,求的分布和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com