精英家教网 > 高中数学 > 题目详情
(2012•淄博一模)已知直线2ax-by+2=0(a>0,b>0)经过圆(x+1)2+(y-2)2=4的圆心,则
1
a
+
1
b
的最小值为
4
4
分析:直线过圆心,先求圆心坐标,利用1的代换,以及基本不等式求最小值即可.
解答:解:圆(x+1)2+(y-2)2=4的圆心(-1,2)在直线2ax-by+2=0上,
所以-2a-2b+2=0,即 1=a+b代入
1
a
+
1
b

得(
1
a
+
1
b
)(a+b)=2+
b
a
+
a
b
≥4(a>0,b>0当且仅当a=b时取等号)
故答案为:4
点评:本题考查圆的标准方程,直线与圆的位置关系,基本不等式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淄博一模)在△ABC中,已知b•cosC+c•cosB=3a•cosB,其中a、b、c分别为角A、B、C的对边.则cosB值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(I)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)已知函数f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若a为第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1+cos2a-sin2a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)已知不等式x2-x≤0的解集为M,且集合N={x|-1<x<1},则M∩N为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)设方程log4x-(
1
4
x=0、log 
1
4
x-(
1
4
x=0的根分别为x1、x2,则(  )

查看答案和解析>>

同步练习册答案