精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点,
(1)求 的最大、最小值;
(2)求x﹣2y的最大、最小值.

【答案】
(1)解:设k= ,则y﹣2=kx﹣k,即直线方程为kx﹣y+2﹣k=0,

∵P(x,y)为圆C上任一点,

∴则圆心(﹣2,0)到直线的距离d= = ≤1,

即|2﹣3k|

平方得8k2﹣12k+3≤0,

解得 ≤k≤

的最大值为 ,最小值为


(2)解:设b=x﹣2y,j即x﹣2y﹣b=0,

∵P(x,y)为圆C上任一点,

∴则圆心(﹣2,0)到直线的距离d=

即|b+2|≤

则﹣2﹣ ≤b≤ ﹣2,

即x﹣2y的最大值为 ﹣2,最小值为﹣2﹣


【解析】(1)设k= ,利用直线和圆的位置关系即可得到结论;(2)设z=x﹣2y,利用直线和圆的位置关系即可得到结论.
【考点精析】通过灵活运用圆的标准方程,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了迎接珠海作为全国文明城市的复查,爱卫会随机抽取了60位路人进行问卷调查,调查项目是自己对珠海各方面卫生情况的满意度(假设被问卷的路人回答是客观的),以分数表示问卷结果,并统计他们的问卷分数,把其中不低于50分的分成五段[50,60),[60,70),…[90,100]后画出如图部分频率分布直方图,观察图形信息,回答下列问题:

(1)求出问卷调查分数低于50分的被问卷人数;
(2)估计全市市民满意度在60分及以上的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数的最小值为1.

(1)求的值;

(2)若,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是拋物线的焦点, 若点,

1)求的值;

2)若直线经过点且与交于(异于)两点, 证明: 直线与直线的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.

(Ⅰ)求的值

(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为 ?若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log2(x2﹣4)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若奇函数f(x)在(0,+∞)上是增函数,且f(﹣1)=0,则不等式xf(x)>0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足不等式组 ,求
(1)z=x+2y的最大值;
(2)z=x2+y2﹣10y+25的最小值.

查看答案和解析>>

同步练习册答案