精英家教网 > 高中数学 > 题目详情
7.有3个男生和3个女生.
(1)若6人站成一排,求男生甲必须站在两端的排法数;
(2)若6人站成前后两排,每排3人,求前排恰有一位女生的排法数.

分析 (1)优先安排甲,其他任意排.问题得以解决.
(2)先考虑前排C31C32A33=54种,再考虑后排A33=6种,利用乘法原理可得.

解答 解:(1)男生甲必须站在两端,其余的进行全排列即可,故有A21A55=240种.           …(5分)
(2)先考虑前排C31C32A33=54种,再考虑后排A33=6种,
所以前排恰有一位女生的排法数为54×6=324种.…(10分)

点评 本题主要考查了排列中常见方法:特殊元素优先安排法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.{an}是各项均不为0的等差数列,{bn}是等比数列,若a1-a${\;}_{7}^{2}$+a13=0,且b7=a7,则b3b11=(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定积分${∫}_{0}^{1}$exdx=(  )
A.1+eB.eC.e-1D.1-e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四面体ABCD中,已知AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,BC=4,CD=5.
(1)求证:平面ABC⊥平面ACD;
(2)求此四面体ABCD的体积和表面积;
(3)求此四面体ABCD的外接球半径和内切球半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\frac{2x}{x+1}$(x>0),观察:
f1(x)=f(x)=$\frac{2x}{x+1}$,
f2(x)=f(f1(x))=$\frac{4x}{3x+1}$,
f3(x)=f(f2(x))=$\frac{8x}{7x+1}$,
f(x)=f(f3(x))=$\frac{16x}{15x+1}$,

根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=$\frac{{2}^{n}x}{({2}^{n}-1)x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.连续抛掷两次质地均匀的骰子得到的点数分别为m和n.
①设向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(2,-2),若“$\overrightarrow{a}$•$\overrightarrow{b}$>0”记为事件A,求P(A)的值;
②求点A(m,n)落在区域x2+y2≤16内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a$,$\overrightarrow b$,若|${\left.{\overrightarrow a}\right.$|=3,|${\left.{\overrightarrow b}\right.$|=4,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°.求:
(1)$\overrightarrow a$•$\overrightarrow b$;
(2)($\overrightarrow b$-2$\overrightarrow a$)•($\overrightarrow a$+2$\overrightarrow b$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a≥2${∫}_{0}^{\frac{π}{3}}$sinxdx,曲线f(x)=ax+$\frac{1}{a}$ln(ax+1)在点(1,f(1))处的切线的斜率为k,则k的最小值为(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,把等腰直角三角形ABC以斜边AB为轴旋转,使C点移动的距离等于AC时停止,并记为点P.
(1)求证:面ABP⊥面ABC;
(2)求二面角C-BP-A的余弦值.

查看答案和解析>>

同步练习册答案