精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=2,an+1 (n∈N*),则a3=________,a1·a2·a3·…·a2007=________.
,3
(解法1)分别求出a2=-3、a3=-、a4、a5=2,可以发现a5=a1,且a1·a2·a3·a4=1,故a1·a2·a3·…·a2 007=a2 005·a2 006·a2 007=a1·a2·a3=3.
(解法2)由an+1,联想到两角和的正切公式,设a1=2=tanθ,则有a2=tan,a3=tan,a4=tan,a5=tan(π+θ)=a1,….则a1·a2·a3·a4=1,
故a1·a2·a3·…·a2 007=a2 005·a2 006·a2 007=a1·a2·a3=3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若三角形内切圆的半径为r,三边长为,则三角形的面积,根据类比思想,若四面体内切球半径为R,四个面的面积为S1S2S3S4,则四面体的体积V=                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比.将这个结论类比到空间:在三棱锥ABCD中,平面DEC平分二面角ACDB且与AB交于E,则类比的结论为=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将全体正整数排成一个三角形数阵
1
2       3
4       5      6
7       8      9      10
11      12     13     14      15
… … … … … … … … …
根据以上排列规律,数阵中第行的从左至右的第个数是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

学习合情推理后,甲、乙两位同学各举了一个例子,
甲:由“若三角形周长为l,面积为S,则其内切圆半径r”类比可得“若三棱锥表面积为S,体积为V,则其内切球半径r”;
乙:由“若直角三角形两直角边长分别为ab,则其外接圆半径r”类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为abc,则其外接球半径r”.这两位同学类比得出的结论(  )
A.两人都对B.甲错、乙对
C.甲对、乙错D.两人都错

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

n个连续自然数按规律排列下表:
0  3 → 4  7 → 8  11…
↓  ↑ ↓   ↑  ↓  ↑
1 → 2  5 → 6  9 → 10
根据规律,从2010到2012箭头方向依次为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察按下列顺序排列的等式:,……,猜想第)个等式应为_         _.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:
先改写第k项:k(k+1)=
由此得1×2-.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,
其结果是_________________.(结果写出关于一次因式的积的形式)

查看答案和解析>>

同步练习册答案