精英家教网 > 高中数学 > 题目详情
已知椭圆的中心点在原点,焦点在坐标轴上,长轴是短轴长的3倍,且过P(3,2),求椭圆方程.
①当焦点在x轴上时,设所求的椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),
由已知条件得
a=3b
9
a2
+
4
b2
=1

a2=45,b2=5.
故所求方程为
x2
45
+
y2
5
=1.
②当焦点在y轴上时,设所求的椭圆方程为
y2
a2
+
x2
b2
=1(a>b>0),
由已知条件得
a=3b
4
a2
+
9
b2
=1

a2=86,b2=
85
9

故所求方程为
y2
85
+
9x2
85
=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设直线y=k(x+3)与抛物线y=ax2交于A(x1,y1)和B(x2,y2)两点,则
1
x1
+
1
x2
的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线x=
1
4
y2
上的点P(x0,y0)到该抛物线的焦点距离为6,则点P的横坐标为(  )
A.5B.6C.4D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=2x,
(1)设点A的坐标为(
2
3
,0)
,求抛物线上距离点A最近的点P的坐标及相应的距离|PA|;
(2)在抛物线上求一点P,使P到直线x-y+3=0的距离最短,并求出距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=4x2的准线方程是(  )
A.y+1=0B.x+1=0C.16y+1=0D.16x+1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y2=2x上一点M到焦点的距离为1,则点M的横坐标是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2x的准线方程是(  )
A.y=
1
2
B.y=-
1
2
C.x=
1
2
D.x=-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P为抛物线y2=2px上任一点,F为焦点,则以PF为直径的圆与y轴(  )
A.相交B.相切
C.相离D.位置由P确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l与抛物线C:y2=4x相交于A、B两点,若线段AB的中点为D(2,2),则直线l的方程为(  )
A.y=
1
2
x+1
B.y=-x+4C.y=xD.y=2x-2

查看答案和解析>>

同步练习册答案