【题目】选修4-4:坐标系与参数方程
平面直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
科目:高中数学 来源: 题型:
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.
(1) 求图中的值;
(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在[﹣2,2]上的奇函数f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m﹣1)>0,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且的图象与直线的两个相邻公共点之间的距离为.
(1)求函数的解析式,并求出的单调递增区间;
(2)将函数的图象上所有点向左平移个单位,得到函数的图象,设, , 为的三个内角,若,且向量, ,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.例如函数 在[1,9]上就具有“DK”性质.
(1)判断函数f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性质?说明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, ,动点满足.设动点的轨迹为.
(1)求动点的轨迹方程,并说明轨迹是什么图形;
(2)求动点与定点连线的斜率的最小值;
(3)设直线交轨迹于两点,是否存在以线段为直径的圆经过?若存在,求出实数的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌的手机专卖店采用分期付款方式经销手机,从参与购手机活动的100名顾客中进行统计,统计结果如下表所示,已知分3期付款的频率为0.2,若顾客采用一次付清,其利润为200元,采用2期或3期付款,其利润为250元,采用4期或5期付款,其利润为300元.
付款期数 | 1 | 2 | 3 | 4 | 5 |
频数 | 40 | 20 | a | b | 10 |
(I)若以上表计算出的频率近似代替概率,从购买手机的顾客(数量较多)中随机抽取3位顾客,求事件“至多有1位采用分3期付款”的概率;
(II)按分层抽样的方式从这100位顾客中抽取5人,再从抽出的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com