精英家教网 > 高中数学 > 题目详情
19.已知p:关于x的方程x2+8x+a2=0有实根;q:对任意x∈R,不等式ex+$\frac{1}{e^x}$>a恒成立,若p∧q为真命题,则实数a的取值范围是(  )
A.-4<a≤2B.-4≤a<2C.a≤4D.a≥-4

分析 先求出p,q为真时,a的取值范围,再根据p∧q为真命题,得到p,q均为真命题,求其交集即可.

解答 解:∵p为真时,△=64-4a2≥0,解得-4≤a≤4,
q:为真时,∵ex+$\frac{1}{e^x}$≥2$\sqrt{{e}^{x}•\frac{1}{{e}^{x}}}$=2,当且仅当x=0时取等号,∴a<2,
∵p∧q为真命题,p,q均为真命题,
∴$\left\{\begin{array}{l}{-4≤a≤4}\\{a<2}\end{array}\right.$,
解得-4≤a<2,
故选:B.

点评 本题考查了一元二次的方程根与判别式的关系、基本不等式性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn=n2+n.
(1)求数列{an}的通项公式;
(2)设bn=an•3n (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.由曲线y=x2和直线y=2x所围成的平面图形的面积等于$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=(x+m)2n+1与g(x)=(mx+1)2n(n∈N*,m≠0).
(Ⅰ)若n=3,f(x)与g(x)展开式中含x3项的系数相等,求实数m的值;
(Ⅱ)若f(x)与g(x)展开式中含xn项的系数相等,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有红、黄、蓝、白4种颜色的小球,每种小球数量不限且它们除颜色不同外,其余完全相同,将小球放入如图所示编号为1,2,3,4,5的盒子中,每个盒子只放一只小球.
(1)放置小球满足:“对任意的正整数j(1≤j≤5),至少存在另一个正整数k(1≤k≤5,且j≠k)使得j号盒子与k号盒子中所放小球的颜色相同”的概率;
(2)记X为5个盒子中颜色相同小球个数的最大值,求X的概率分布和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在某次电影展映活动中,展映的影片类型有科幻片和文艺片两种,统计数据显示.100名男性观众中选择科幻片的有60名,60名女性观众中选择文艺片的有40名.
(1)根据已知条件完成2×2列联表:
科幻片文艺片合计
6040100
204060
合计8080160
(2)判断是否有99%的把握认为“观影类型与性别有关”?
随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
临界值表:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果对于任意实数a,b(a<b),随机变量X满足P(a<X≤b)=${∫}_{a}^{b}$φμσ(x)dx,称随机变量X服从正态分布,记为N(μ,σ2),若X~N(0,1),则${∫}_{-1}^{1}$φμσ(x)dx=0.6826.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:
支持不支持合计
中型企业8040120
小型企业240200440
合计320240560
(1)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,中小型企业各应抽几家?
(2)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
P(K2≥k00.0500.0250.010
k03.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,点D在线段BC上,且满足BD=$\frac{1}{2}$DC,过点D的直线分别交直线AB,AC于不同的两点M,N,若$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$,则(  )
A.m+n是定值,定值为2B.2m+n是定值,定值为3
C.$\frac{1}{m}$+$\frac{1}{n}$是定值,定值为2D.$\frac{2}{m}$+$\frac{1}{n}$是定值,定值为3

查看答案和解析>>

同步练习册答案