精英家教网 > 高中数学 > 题目详情
20.以下关于函数f(x)=sin2x-cos2x的命题,正确的是(  )
A.函数f(x)在区间$(0,\frac{2}{3}π)$上单调递增
B.直线$x=\frac{π}{8}$是函数y=f(x)图象的一条对称轴
C.点$(\frac{π}{4},0)$是函数y=f(x)图象的一个对称中心
D.将函数y=f(x)的图象向左平移$\frac{π}{8}$个单位,可得到$y=\sqrt{2}sin2x$的图象

分析 利用两角和差的正弦公式化简函数的解析式,再利用正弦函数的图象和性质,得出结论.

解答 解:函数f(x)=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),在区间$(0,\frac{2}{3}π)$上,2x-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{13π}{12}$),故函数在区间$(0,\frac{2}{3}π)$上不单调,故排除A;
令x=$\frac{π}{8}$,求得f(x)=0,不是函数的最值,故直线$x=\frac{π}{8}$不是函数y=f(x)图象的一条对称轴,故排除B;
令x=$\frac{π}{4}$,求得f(x)=1≠0,故点$(\frac{π}{4},0)$不是函数y=f(x)图象的一个对称中心,故排除C;
将函数y=f(x)的图象向左平移$\frac{π}{8}$个单位,可得到 y=$\sqrt{2}$sin[2(x+$\frac{π}{8}$)-$\frac{π}{4}$═$\sqrt{2}$sin2x的图象,
故D正确.
故选:D.

点评 本题主要考查两角和差的正弦公式,正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知{an}是等差数列,满足a1=2,a4=14,数列{bn}满足b1=4,b4=30,且数列{bn-an}是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(2x+$\frac{π}{4}$)+1.
(1)用“五点法”作出f(x)在$x∈[-\frac{π}{8},\frac{7π}{8}]$上的简图;
(2)写出f(x)的对称中心以及单调递增区间;
(3)求f(x)的最大值以及取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l过点(3,2),且与两条坐标轴围成一个等腰直角三角形,则直线l的方程为x-y-1=0或x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在区间$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一个数x,则函数$f(x)=3sin({2x-\frac{π}{6}})$的值不小于0的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{6}{11}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某工厂第三年的产量比第一年的产量增加20%,若每年的平均增长率相同(设为x),则以下结论正确的是(  )
A.x=10%B.x<10%
C.x>10%D.x的大小由第一年的产量决定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则此几何体的表面积为(  )
A.$80+16\sqrt{2}$B.$96+13\sqrt{2}$C.96D.112

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)为二次函数,-1和3是函数y=f(x)-x-4的两个零点,且f(0)=1
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ) 设g(x)=f(x)-3x-6,求y=g(log3x)在区间$[\frac{1}{9},27]$上的最值,并求相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)若AF=BE,求二面角的E-OC-F的余弦值大小.

查看答案和解析>>

同步练习册答案