精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sin( x+φ),1), =(1,cos( x+φ))(ω>0,0<φ< ),记函数f(x)=( + )( ).若函数y=f(x)的周期为4,且经过点M(1, ).
(1)求ω的值;
(2)当﹣1≤x≤1时,求函数f(x)的最值.

【答案】
(1)解:f(x)=( + )( )= = =﹣cos(ωx+2φ).

由题意得:周期 ,故


(2)解:∵图象过点M(1, ),

∴﹣cos( +2φ)=

即sin2φ= ,而0<φ< ,故2φ= ,则f(x)=﹣cos( ).

当﹣1≤x≤1时,

∴当x=﹣ 时,f(x)min=﹣1,当x=1时,


【解析】(1)由数量积的坐标运算化简得到函数解析式,结合周期公式求得ω的值;(2)由(1)及函数图象经过点M(1, )求得函数具体解析式,在由x的范围求得相位的范围,则函数f(x)的最值可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,若m<n,且f(m)=f(n),则n﹣m的取值范围是(
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求bc的值;

(Ⅱ)试比较m∈R)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系 轴在地平面上, 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;

(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的椭圆的标准方程.

(1)焦点在坐标轴上,且经过点A (,-2),B(-2,1)

(2)与椭圆有相同焦点且经过点M(,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数的图象过点,点与其相邻的最高点的距离为.

(1)求的单调递增区间;

(2)计算

(3)设函数,试讨论函数在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R上定义一种运算“*”,对于任意给定的a、b∈R,a*b为唯一确定的实数,且具有性质:
1)对任意a、b∈R,a*b=b*a;
2)对任意a、b∈R,a*0=a;
3)对任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.
关于函数f(x)=x* 的性质,有如下说法:
①在(0,+∞)上函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(﹣∞,﹣1),(1,+∞).
其中所有正确说法的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.统计情况如下表:(单位:人)

几何题

代数题

总计

男同学

女同学

总计

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?

(2)经过多次测试发现:女生甲解答一道几何题所用的时间在分钟,女生乙解答一道几何题所用的时间在分钟,现甲、乙两人独立解答同一道几何题,求乙比甲先解答完的概率;

(3)现从选择几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记甲、乙两名女生被抽到的人数为,求的分布列及数学期望.

附表及公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,在底面的射影为的中点,的中点.

1)证明:平面

2)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案