精英家教网 > 高中数学 > 题目详情

【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:

(年)

2

3

4

5

6

(万元)

1

2.5

3

4

4.5

参考公式:.

(1)若知道呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?

【答案】(1) (2)见解析

【解析】

(1)对照公式,计算相应数据,即可得到线性回归方程;(2)将x=10,代入方程,即可求得结论.

(1)根据所给表格数据计算得

所以,关于的线性回归方程为.

(2)由(1)得,当时,

即技术改造后的10年的维修费用为8.1万元,

相比技术改造前,该型号的设备维修费降低了0.9万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

(1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用表示年龄在内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的外心为O,EAC的中点,直线OEAB于点D,M、N分别是的外心、内心.AB=2BC,证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时,.现已画出函数轴右侧的图象,如图所示.

1)画出函数轴左侧的图象,根据图象写出函数上的单调区间;

2)求函数上的解析式;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)如果函数的单调递减区间为,求函数的解析式;

2)在(1)的条件下,求函数的图象在点处的切线方程;

3)若不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直线上的点作椭圆的切线,切点分别为,联结

(1)当点在直线上运动时,证明直线恒过定点

(2)当时,定点平分线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点.

1)已知平面内点,点.把点绕点沿顺时针方向旋转后得到点,求点的坐标;

2)设平面内曲线上的每一点绕坐标原点沿逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线的方程,并求曲线上的点到原点距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,若的最大值为16,则实数__________

查看答案和解析>>

同步练习册答案