精英家教网 > 高中数学 > 题目详情

【题目】已知称为的二维平方平均数,称为的二维算术平均数,称为的二维几何平均数,称为的二维调和平均数,其中均为正数.

(1)试判断的大小,并证明你的猜想.

(2)令,试判断的大小,并证明你的猜想.

(3)令,试判断三者之间的大小关系,并证明你的猜想.

【答案】1;(2;(3

【解析】

试题(1)用分析法结合基本不等式即可证得.(2) 用分析法结合基本不等式即可证得.(3)先证再证,均采用分析法结合基本不等式进行证明.

试题解析:解:(,采用分析法。欲证,即证,即证,即证,上式显然成立。

。欲证,即证,由均值不等式可得:

,等号成立的条件是,所以原命题成立.

。首先证明:欲证,即证,即证,即证,即证,即证,上式显然成立,等号成立的条件是,故

再证:欲证,即证,即证,当时,上式显然成立,当时,即证,而此式子在证明已经成功证明,所以原命题成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆B为椭圆上任一点,F为椭圆左焦点,已知的最小值与最大值之和为4,且离心率,抛物线的通径为4

求椭圆和抛物线的方程;

设坐标原点为OA为直线与已知抛物线在第一象限内的交点,且有

试用k表示AB两点坐标;

是否存在过AB两点的直线l,使得线段AB的中点在y轴上?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:

包裹重量(单位:

包裹件数

公司对近天,每天揽件数量统计如下表:

包裹件数范围

包裹件数

(近似处理)

天数

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来天内恰有天揽件数在之间的概率;

(2)(i)估计该公司对每件包裹收取的快递费的平均值;

(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,若函数恰有一个零点,求的取值范围;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.

该公司将近天,每天揽件数量统计如下:

包裹件数范围

包裹件数

(近似处理)

天数

(1)某人打算将 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;

(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),得到如图5的茎叶图,整数位为茎,小数位为叶,如27.1mm的茎为27,叶为1.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)

(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;

(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记为抽取的棉花纤维长度为二级的根数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=cos2x+2sinxcosxsin2x

1)求函数fx)的最小正周期

2)求函数fx)单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点分别为,其短半轴长为.

(1)求椭圆的方程;

(2)设不经过点的直线与椭圆相交于两点.若直线的斜率之和为,求实数的值.

查看答案和解析>>

同步练习册答案