精英家教网 > 高中数学 > 题目详情
2.在极坐标系中,以下是圆ρ=2cosθ的一条切线的是(  )
A.ρsinθ=2B.ρsinθ=-2C.ρcosθ=-2D.ρcosθ=2

分析 圆的直角坐标方程为(x-1)2+y2=1.由此能求出圆ρ=2cosθ的一条切线方程.

解答 解:圆ρ=2cosθ,即ρ2=2ρcosθ,
由ρ2=x2+y2,ρcosθ=x,
得x2+y2=2x,即(x-1)2+y2=1.
在A中,ρsinθ=2,即y=2,圆心(1,0)到直线y=2的距离d=2>r=1,故A不是圆的切线;
在B中,ρsinθ=-2,即y=-2,圆心(1,0)到直线y=-2的距离d=2>r=1,故B不是圆的切线;
在C中,ρcosθ=-2,即x=-2,圆心(1,0)到直线x=-2的距离d=3>r=1,故C不是圆的切线;
在D中,ρcosθ=2,即x=2,圆心(1,0)到直线x=2的距离d=1=r,故D是圆的切线.
故选:D.

点评 本题考查圆的切线方程的求法,考查极坐标、直角坐标的互化,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某三棱锥的三视图如图所示,则该三棱锥的俯视图的面积为$\frac{1}{2}$,该三棱锥的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,则该几何体的体积为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于(  )
A.84cm3B.92cm3C.98cm3D.100cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{1}{1+a}>1-a$,则实数a的取值范围是(  )
A.a>0B.a>1C.a>-1且a≠0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC中,AB=2,AC=3,tan∠BAC=2$\sqrt{2}$,D是BC边上的点,且BD=3CD,则$\overrightarrow{AD}•\overrightarrow{BC}$=$\frac{19}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex,g(x)=$\frac{a}{2}x+b$(a,b∈R),
(1)若h(x)=f(x)g(x),b=1-$\frac{a}{2}$.求h(x)在[0,1]上的最大值φ(a)的表达式;
(2)若a=4时,方程f(x)=g(x)在[0,2]上恰有两个相异实根,求实根b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下列不等式:$\sqrt{1•2}<\frac{3}{2}$,$\sqrt{1•2}+\sqrt{2•3}$<4,$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}<\frac{15}{2}$,
$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+\sqrt{4•5}$<12,…
照此规律,第n个不等式为$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列值为2的积分是(  )
A.$\int_0^5{({2x-4})dx}$B.$\int_0^π{cosxdx}$C.$\int_1^3{\frac{1}{x}dx}$D.$\int_0^π{sinxdx}$

查看答案和解析>>

同步练习册答案