【题目】已知二次函数交轴于两点(不重合),交轴于点. 圆过三点.下列说法正确的是( )
① 圆心在直线上;
② 的取值范围是;
③ 圆半径的最小值为;
④ 存在定点,使得圆恒过点.
A. ①②③B. ①③④C. ②③D. ①④
科目:高中数学 来源: 题型:
【题目】对于定义域为R的函数f(x),若满足①f(0)=0;②当x∈R,且x≠0时,都有xf'(x)>0;③当x1≠x2 , 且f(x1)=f(x2)时,x1+x2<0,则称f(x)为“偏对称函数”. 现给出四个函数:g(x)= ;φ(x)=ex﹣x﹣1.
则其中是“偏对称函数”的函数个数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某海面上有、、三个小岛(面积大小忽略不计),岛在岛的北偏东方向处,岛在岛的正东方向处.
(1)以为坐标原点,的正东方向为轴正方向,为单位长度,建立平面直角坐标系,写出、的坐标,并求、两岛之间的距离;
(2)已知在经过、、三个点的圆形区域内有未知暗礁,现有一船在岛的南偏西方向距岛处,正沿着北偏东行驶,若不改变方向,试问该船有没有触礁的危险?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;
(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com