精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆M: +y2=1,圆C:x2+y2=6﹣a2在第一象限有公共点P,设圆C在点P处的切线斜率为k1 , 椭圆M在点P处的切线斜率为k2 , 则 的取值范围为(
A.(1,6)
B.(1,5)
C.(3,6)
D.(3,5)

【答案】D
【解析】解:设P(x0,y0),

由椭圆M: +y2=1,圆C:x2+y2=6﹣a2在第一象限有公共点P,

当焦点在x轴时,即a>1时,

,解得:3<a2<5,

当焦点在y轴,即0<a<1时,显然圆与椭圆无交点,

圆x2+y2=6﹣a2在P点的切线方程为x0x+y0y=6﹣a2,则切线斜率k1=﹣

椭圆M: +y2=1在P点的切线方程为 ,则切线斜率k2=﹣

=a2

的取值范围(3,5),

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)ex , a∈R. (Ⅰ)当a=1时,试求f(x)的单调增区间;
(Ⅱ)试求f(x)在[1,2]上的最大值;
(Ⅲ)当a=1时,求证:对于x∈[﹣5,+∞), 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.
(Ⅰ)若 ,求证:直线l恒过定点,并求出定点坐标;
(Ⅱ)若直线l与曲线C1相切,M(1,0),求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线 与圆x2+y2=1相交于A、B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2 cos( ﹣θ)
(1)求曲线C的直角坐标方程;
(2)已知直线l过点P(1,0)且与曲线C交于A,B两点,若|PA|+|PB|= ,求直线l的倾斜角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且ctanC= (acosB+bcosA).
(1)求角C;
(2)若c=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生(
A.100人
B.60人
C.80人
D.20人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为(
A.( ﹣2,
B.( ﹣2, ]
C.( ﹣1]
D.( ﹣1)

查看答案和解析>>

同步练习册答案