精英家教网 > 高中数学 > 题目详情

【题目】线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.

【答案】

【解析】

如图所示,设t h后,汽车由A行驶到D,摩托车由B行驶到E利用余弦定理求出DE2=12900t2-42000t+40000.再利用二次函数的性质求出t的值和最小值.

如图所示,设t h后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80tBE=50t.因为AB=200,所以BD=200-80t,由余弦定理得,DE2=(200-80t)2+2500t2-(200-80t)·50t=12900t2-42000t+40000.所以当t时,DE最小.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且以原点为圆心,椭圆的焦距为直径的圆与直线相切(为常数).

(1)求椭圆的标准方程;

(2)如图,若椭圆的左、右焦点分别为,过作直线与椭圆分别交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin(2x﹣ )的图象向左平移 个单位,得到函数g(x)的图象,则函数g(x)的一个单调递减区间是(
A.[﹣ ,0]
B.[﹣ ,0]
C.[0, ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a∈R),给出两个命题:p:函数f(x)的值域不可能是(0,+∞);q:函数f(x)的单调递增区间可以是(-∞,-2].那么下列命题为真命题的是(  )

A. p∧q B. p∨(q)

C. (p)∧q D. (p)∧(q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xcosx2在区间[0,4]上的零点个数为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列说法:
①一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是12人;
②采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,27,38,49的同学均选中,则该班学生的人数为60人;
③废品率x%和每吨生铁成本y(元)之间的回归直线方程为 ,这表明废品率每增加1%,生铁成本大约增加258元;
④为了检验某种血清预防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防作用”,利用2×2列联表计算得K2的观测值k≈3.918,经查对临界值表知P(K2≥3.841)≈0.05,由此,得出以下判断:在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防的作用”.
正确的有(
A.①④
B.②③
C.①③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x 使不等式2f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M的对称轴为坐标轴,离心率为,且一个焦点坐标为(,0).

(1)求椭圆M的方程;

(2)设直线l与椭圆M相交于A,B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M,O为坐标原点,求点O到直线l的距离的最小值.

查看答案和解析>>

同步练习册答案