精英家教网 > 高中数学 > 题目详情

对于数列,如果存在一个正整数,使得对任意的都有成立,那么就把这样一类数列称作周期为的周期数列,的最小正值称作数列的最小正周期,以下简称周期。例如当时,是周期为的周期数列;当时,是周期为的周期数列。设数列满足.

(1)若数列是周期为的周期数列,则常数的值是       

(2)设数列的前项和为,若,则         .

 

【答案】

(1)-1, (2) 3

【解析】解:由(1)数列{an}是周期为3的数列,

得an+3=an,且 an+2=λ an+1-an 

an+3=λan+2-an+1   (λ+1)(an+2-an+1)=0,即λ=-1.

(2)利用数列的递推关系

an+3= an+2-an+1,进行分析,数列的特点,得到前2012项的为为3.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•上海一模)观察数列:
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
存在正整数T
存在正整数T
,对于一切正整数n都满足
an+T=an
an+T=an
成立,则称数列{an}是以T为周期的周期数列;
(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008
(3)若数列{an}的首项a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判断数列{an}是否为周期数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区一模)已知数列{an}满足a1=a(a≠0,且a≠1),其前n项和Sn=
a
1-a
(1-an)

(Ⅰ)求证:{an}为等比数列;
(Ⅱ)记bn=anlg|an|(n∈N*),Tn为数列{bn}的前n项和.
(i)当a=2时,求
lim
n→∞
Tn
bn

(ii)当a=-
7
3
时,是否存在正整数m,使得对于任意正整数n都有bn≥bm?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n0(n0≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•延庆县一模)对于数列{an},如果存在一个数列{bn},使得对于任意的n∈N*,都有an≥bn,则把{bn}叫做{an}的“基数列”.
(Ⅰ)设an=-n2,求证:数列{an}没有等差基数列;
(Ⅱ)设an=n3-n2-2tn+t2bn=n3-2n2-n+
5
4
,(n∈N*),且{bn}是{an}的基数列,求t的取值范围;
(Ⅲ)设an=1-e-nbn=
n
n+1
,(n∈N*),求证{bn}是{an}的基数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{an},如果存在正实数M,使得数列中每一项的绝对值均不大于M,那么称该数列为有界的,否则称它为无界的.在以下各数列中,无界的数列为(  )
A、a1=2,an+1=-2an+3
B、a1=2,an+1=
an
2
+1
C、a1=2,an+1=arctanan+1
D、a1=2,an+1=2
an
+1

查看答案和解析>>

同步练习册答案