精英家教网 > 高中数学 > 题目详情

【题目】如下图所示的三棱柱中,棱底面 分别是 的中点.

(Ⅰ)求证:

(Ⅱ)求为二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ)

【解析】试题分析: 平面 平面

(Ⅱ)结合建立适当的坐标系,求二面角的余弦.

试题解析:(Ⅰ)证明:

如下图,取的中点

连接

在三棱柱中,

MN分别是 的中点

底面 平面

平面

平面

(Ⅱ)解:设,作

A为坐标原点,建立如下图所示的空间直角坐标系为 (点O与点A重合),

由题意,DBC的中点,

所以

MN分别是 的中点

所以

设平面的一个法向量为

,则

于是

同理可得平面ADN的一个法向量为

设二面角的平面角为

由题意知, 为锐角,

因此,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人约定在中午12时到下午1时之间到某站乘公共汽车,又知这段时间内有4班公共汽车.设到站时间分别为12:15,12:30,12:45,1:00.如果他们约定:
①见车就乘;
②最多等一辆.
试分别求出在两种情况下两人同乘一辆车的概率.假设甲乙两人到达车站的时间是相互独立的,且每人在中午12点到1点的任意时刻到达车站是等可能的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为,求它在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的椭圆的标准方程:

(1)(0,5)(0,-5)为焦点,且椭圆上一点P到两焦点的距离之和为26

(2)以椭圆9x25y245的焦点为焦点,且经过M(2 )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率为.

(1)求椭圆的方程;

(2)点在椭圆上上,若点与点关于原点的对称,连接,并延长与椭圆的另一个交点为,连接,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin2x+2cosx( )的最大值与最小值分别为(
A.最大值 ,最小值为﹣
B.最大值为 ,最小值为﹣2
C.最大值为2,最小值为﹣
D.最大值为2,最小值为﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x1是函数f(x)ax3x2(a1)x5的一个极值点.

(1)求函数f(x)的解析式;

(2)若曲线yf(x)与直线y2xm有三个交点求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)判断△ABC的形状;
(2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

同步练习册答案