精英家教网 > 高中数学 > 题目详情
(12分)已知是函数的一个极值点。
(1)求;         (2)求函数的单调区间;
(3)若直线与函数的图象有3个交点,求的取值范围。
(Ⅰ).(Ⅱ)的单调增区间是,的单调减区间是.(Ⅲ)的取值范围为
本试题主要是考察了导数在研究函数的中 运用,利用函数的极值点可知导数为零得到参数的取值,然后求解析式,并利用导数来判定函数的单调性以及研究常函数与函数的交点的问题的综合运用。
(1)利用函数在是函数的一个极值点,说明了该点的导数值为零,得到参数的值。
(2)利用第一问的结论求解导数,判定单调区间。
(3)要研究常函数与已知函数的交点问题,关键是弄清楚,函数y=f(x)与坐标轴的位置关系即可。
解:(Ⅰ)因为,所以,因此.
(Ⅱ)由(Ⅰ)知,,,
时,,当时,,所以的单调增区间是
,的单调减区间是.
(Ⅲ)由(Ⅱ)知,内单调增加,在内单调减少,在上单调增加,且当时,,所以的极大值为,极小值为,
因此,,
所以在的三个单调区间直线的图象各有一个交点,当且仅当,因此,的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)设函数,其中
⑴当时,判断函数在定义域上的单调性;
⑵求函数的极值点;
⑶证明对任意的正整数,不等式成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,且曲线y=f(x)在x=1处的切线与x轴平行。
(Ⅰ)求的值,并讨论的单调性;
(Ⅱ)证明:当

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数)
(1)若上单调递增,且
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数的图象在直线
的下方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知时的极值为0.
(1)求常数ab的值;
(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f (x)=lnx.
(Ⅰ)函数g(x)=3x-2,若函数F(x)=f(x)+g(x),求函数F(x)的单调区间;
(Ⅱ)函数h(x)=,函数G(x)=h(x)·f(x),若对任意x∈(0,1),
G(x)<-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)是(0,+∞)上的非负可导函数,且,对任意正数a,b,若a<b,
则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数有极值,则导函数的图象不可能是  (   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数.
(Ⅰ)若,求实数的取值范围;
(Ⅱ)判断函数的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案