精英家教网 > 高中数学 > 题目详情

例2:方程2x=2-x的解的个数为________.

1
分析:构造两个函数y=2x和y=2-x分别画出图象,利用有无交点来判断根的个数.
解答:解:方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别作出这两个函数图象(如图).
由图象得只有一个交点,因此该方程只有一个解.
故答案为:1
点评:此题考查根的存在性及根的个数,无法直接求解的方程问题,常用作图法来解,注意数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x-1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得
PQPR
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

13、例2:方程2x=2-x的解的个数为
1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市木渎高级中学天华学校高三(上)12月月考数学试卷(解析版) 题型:解答题

已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x-1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:2.7 指数与指数函数(解析版) 题型:解答题

例2:方程2x=2-x的解的个数为   

查看答案和解析>>

同步练习册答案