精英家教网 > 高中数学 > 题目详情

【题目】春秋以前中国已有“抱瓮而出灌”的原始提灌方式,使用提水吊杆——桔槔,后发展成辘轳.19世纪末,由于电动机的发明,离心泵得到了广泛应用,为发展机械提水灌溉提供了条件.图形如图所示为灌溉抽水管道在等高图的上垂直投影,在A处测得B处的仰角为37度,在A处测得C处的仰角为45度,在B处测得C处的仰角为53度,A点所在等高线值为20米,若BC管道长为50米,则B点所在等高线值为( )(参考数据

A.30B.50C.60D.70

【答案】B

【解析】

,则,再由建立方程即可得到答案.

由题意,作出示意图如图所示,

由已知,

,则

所以由,得,解得,又A点所在等高线值为20米,

B点所在等高线值为.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知可导函数fx)的定义域为,且满足,则对任意的,“”是“”的( )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)在定义域(0+∞)上是单调函数,且x∈(0+∞),ffx)﹣ex+x)=e.若不等式2fx)﹣f′(x)﹣3axx∈(0+∞)恒成立,则a的取值范围是(

A.(﹣∞,e2]B.(﹣∞,e1]C.(﹣∞,2e3]D.(﹣∞,2e1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是等腰梯形,,三角形是等边三角形,平面平面EF分别为的中点.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点设函数

(1)若函数上无极值点,求的取值范围;

(2)求证:对任意实数,在函数的图象上总存在两条切线相互平行;

(3)当时,若函数的图象上存在的两条平行切线之间的距离为4,问;这样的平行切线共有几组?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春秋以前中国已有“抱瓮而出灌”的原始提灌方式,使用提水吊杆——桔槔,后发展成辘轳.19世纪末,由于电动机的发明,离心泵得到了广泛应用,为发展机械提水灌溉提供了条件.图形如图所示为灌溉抽水管道在等高图的上垂直投影,在A处测得B处的仰角为37度,在A处测得C处的仰角为45度,在B处测得C处的仰角为53度,A点所在等高线值为20米,若BC管道长为50米,则B点所在等高线值为( )(参考数据

A.30B.50C.60D.70

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,抛物线E顶点在坐标原点,焦点为.以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.

(Ⅰ)求抛物线E的极坐标方程;

(Ⅱ)过点倾斜角为的直线lEMN两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)讨论的单调性;

2)已知函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市数学教研室对全市201815000名的高中生的学业水平考试的数学成绩进行调研,随机选取了200名高中生的学业水平考试的数学成绩作为样本进行分析,将结果列成频率分布表如下:

数学成绩

频数

频率

5

0.025

15

0.075

50

0.25

70

0.35

45

0.225

15

0.075

合计

200

1

根据学业水平考试的数学成绩将成绩分为“优秀”、“合格”、“不合格”三个等级,其中成绩大于或等于80分的为“优秀”,成绩小于60分的为“不合格”,其余的成绩为“合格”.

1)根据频率分布表中的数据,估计全市学业水平考试的数学成绩的众数、中位数(精确到0.1);

2)市数学教研员从样本中又随机选取了名高中生的学业水平考试的数学成绩,如果这名高中生的学业水平考试的数学成绩的等级情况恰好与按照三个等级分层抽样所得的结果相同,求的最小值;

3)估计全市2018级高中生学业水平考试“不合格”的人数.

查看答案和解析>>

同步练习册答案