【题目】如图,已知抛物线与轴相交于点,两点,是该抛物线上位于第一象限内的点.
(Ⅰ) 记直线的斜率分别为,求证:为定值;
(Ⅱ)过点作,垂足为.若关于轴的对称点恰好在直线上,求的面积.
科目:高中数学 来源: 题型:
【题目】某校20名同学的数学和英语成绩如下表所示:
将这20名同学的两颗成绩绘制成散点图如图:
根据该校以为的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩,考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消.
取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;
取消两位作弊同学的两科成绩后,求数学成绩x与英语成绩y的线性回归直线方程,并据此估计本次英语考试学号为8的同学如果没有作弊的英语成绩.(结果保留整数)
附:位同学的两科成绩的参考数据:
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形与均为菱形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是 ,样本数据分组为,.
(Ⅰ)求直方图中的值;
(Ⅱ)如果年上缴税收不少于万元的企业可申请政策优惠,若共抽取企业个,试估计有多少企业可以申请政策优惠;
(Ⅲ)从企业中任选个,这个企业年上缴税收少于万元的个数记为 ,求的分布列和数学期望.(以直方图中的频率作为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,垂直于梯形所在的平面,为的中点,,四边形为矩形,线段交于点.
(1)求证:平面;
(2)求二面角的正弦值;
(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为单位正方体,黑白两只蚂蚁从点出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是,黑蚂蚁爬行的路线是,它们都遵循如下规则:所爬行的第段与第段所在直线必须是异面直线(其中是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com