精英家教网 > 高中数学 > 题目详情
设F1,F2为双曲线
x2
a2
-
y2
b2
=1的左右焦点,以F1F2为直径作圆与双曲线左支交于A,B两点,且∠AF1B=120°.则双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,可得△OF1A是等边三角形,再利用双曲线的定义,即可求得离心率.
解答: 解:∵以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,
∴△OF1A是等边三角形
∴|AF1|=c,|AF2|=
|F1F2|2-|AF1|2
=
3
c,
∴2a=|AF2|-|AF1|=(
3
-1)c,
∴e=
c
a
=
2
3
-1
=
3
+1.
故答案为:
3
+1.
点评:本题考查双曲线的性质,考查双曲线的定义,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直径为2的圆O与平面α 有且只有一个公共点,且圆O上恒有两点到平面α 的距离为1,则圆O所在平面与平面α 所成锐二面角的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-y+2=0与圆x2+y2=4的位置关系是
 
.(填相交、相切或相离)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c都是正实数,求证:
(Ⅰ)a+b+c≥
ab
+
bc
+
ca

(Ⅱ)(a+b+c)(a2+b2+c2)≥9abc.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c是双曲线M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距,则
c
a+b
的最小值是(  )
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1,+∞)上的函数f(x)=
8x-8,1≤x<
3
2
-8x+16,
3
2
≤x≤2
1
2
f(
x
2
),x>2
,则关于x的方程2nf(x)-1=0(n∈N*)的所有解的和为 (  )
A、3n2+3n
B、3×2n+2+9
C、3n+2+6
D、9×2n+1-3

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥A-BCD的外接球为球O,球O的直径AD=2,且△ABC,△BCD都是等边三角形,则三棱锥A-BCD的体积是(  )
A、
1
3
B、
2
4
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x
a(x+2)
,x=f(x)有唯一解,f(x0)=
1
1008
,f(xn-1)=xn,n=1,2,3,…,则x2015=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边分别是a,b,c,且满足b2+c2=bc+a2
(1)求角A;
(2)若a=2,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案