精英家教网 > 高中数学 > 题目详情

【题目】已知0<α<π,sin(π﹣α)+cos(π+α)=m.
(1)当m=1时,求α;
(2)当 时,求tanα的值.

【答案】
(1)解:由已知得:sinα﹣cosα=1,所以1﹣2sinαcosα=1,∴sinαcosα=0,

又0<α<π,∴cosα=0,∴


(2)解:当 时, .①

,∴ ,∴

,∴ .②

由①②可得

∴tanα=2.


【解析】(1)利用诱导公式、同角三角函数的基本关系,求得sinαcosα=0,结合0<α<π,可得cosα=0,从而求得α的值.(2)当 时, ,由此利用同角三角函数的基本关系求得sinα+cosα的值,可得sinα和cosα的值,从而求得tanα的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )+a的最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是定义在 上的偶函数,对任意 ,都有 ,且当 时, .若 上有5个根 ,则 的值是( )
A.10
B.9
C.8
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0 , y0),且y0<x0+2,则 的取值范围是(
A.[﹣ ,0)
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上. (I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD. (Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函数f(x)在 单调递减,求实数a的取值范围;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f( )=
(1)求a的值,并写出函数f(x)的最小正周期(不需证明);
(2)是否存在正整数k,使得函数f(x)在区间[0,kπ]内恰有2017个零点?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx﹣ )( <ω<2),在区间(0, )上(
A.既有最大值又有最小值
B.有最大值没有最小值
C.有最小值没有最大值
D.既没有最大值也没有最小值

查看答案和解析>>

同步练习册答案