精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )

A.y=x2B.C.y=2|x|D.y=cosx

【答案】B

【解析】

A. 根据奇偶性的定义判断奇偶性,根据的图象判断单调性.B. 根据奇偶性的定义判断奇偶性,根据 的图象判断单调性.C. 根据奇偶性的定义判断奇偶性,根据 的图象判断单调性.D. 根据奇偶性的定义判断奇偶性,根据的图象判断单调性.

因为,所以是偶函数,又因为在(0+∞)上单调递增,故A错误.

因为,所以是偶函数,又因为,在(0+∞)上单调递减,故B正确.

因为,所以 是偶函数,又因为 (0+∞)上单调递增,故C错误.

因为,所以是偶函数,又因为 (0+∞)上不单调,故D错误.

故选;D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线的左右焦点,过且斜率为1的直线与两条渐近线分别交于两点,若,则双曲线的离心率为( )

A. B. C. D.

【答案】B

【解析】设直线方程为,与渐近线方程联立方程组解得因为,所以 ,选B.

点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.

型】单选题
束】
10

【题目】是两条不同的直线, 是两个不同的平面,则下列命题中正确的是( )

A. ,则

B. , ,则

C. , ,则

D. ,且,点,直线,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象为C,如下结论中正确的是(

①图象C关于直线对称;②函数在区间内是增函数;

③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的多面体中,EF⊥平面AEBAEEBADEFEFBCBC=2AD=4EF=3AE=BE=2GBC的中点.

(Ⅰ)求证:AB∥平面DEG

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,平面⊥平面

(Ⅰ)求证: ⊥平面

(Ⅱ)求证:

(Ⅲ)若点在棱上,且平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数f(x)的最小正周期和单调递减区间;

(2)求函数f(x)的最大值及取得最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|(x﹣a),a为实数.

(1)若函数f(x)为奇函数,求实数a的值;

(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;

(3)是否存在实数a(a<0),使得f(x)在闭区间上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最小正周期;

(2)当时,

(ⅰ)求函数的单调递减区间;

(ⅱ)求函数的最大值最小值,并分别求出使该函数取得最大值最小值时的自变量的值.

查看答案和解析>>

同步练习册答案