【题目】已知抛物线: ()的焦点是椭圆: ()的右焦点,且两曲线有公共点
(1)求椭圆的方程;
(2)椭圆的左、右顶点分别为, ,若过点且斜率不为零的直线与椭圆交于, 两点,已知直线与相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.
【答案】(1) (2) 点在定直线上
【解析】试题分析:(1)由条件易得: ,从而得到椭圆的方程;
(2)先由特殊位置定出,猜想点在直线上,由条件可得直线的斜率存在, 设直线,联立方程,消得: 有两个不等的实根,利用韦达定理转化条件即可.
试题解析:
(1)将代入抛物线得
∴抛物线的焦点为,则椭圆中,
又点在椭圆上,
∴, 解得,
椭圆的方程为
(2)方法一
当点为椭圆的上顶点时,直线img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/5075df16/SYS201808071806350814512596_DA/SYS201808071806350814512596_DA.027.png" width="9" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />的方程为,此时点, ,则直线和直线,联立,解得,
当点为椭圆的下顶点时,由对称性知: .
猜想点在直线上,证明如下:
由条件可得直线的斜率存在, 设直线,
联立方程,
消得: 有两个不等的实根,
,
设,则,
则直线与直线
联立两直线方程得(其中为点横坐标)
将代入上述方程中可得,
即,
即证
将代入上式可得
,此式成立
∴点在定直线上.
方法二
由条件可得直线的斜率存在, 设直线
联立方程,
消得: 有两个不等的实根,
,
设,则,
,
由, , 三点共线,有:
由, , 三点共线,有:
上两式相比得
,
解得
∴点在定直线上.
科目:高中数学 来源: 题型:
【题目】已经函数的定义域为,设
(1)试确定的取值范围,使得函数在上为单调函数
(2)求证
(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.(解答过程可参考使用以下数据)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,圆,点是圆上一动点, 的垂直平分线与线段交于点.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,过点且斜率不为0的直线与交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(是自然对数的底数)
(1)若直线为曲线的一条切线,求实数的值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海产品经销商调查发现,该海产品每售出吨可获利万元,每积压吨则亏损万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.
(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货吨,以(单位:吨, )表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.
(1)求椭圆的标准方程;
(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了名男生、名女生进行为期一周的跟踪调查,调查结果如表所示:
平均每天使用手机超过小时 | 平均每天使用手机不超过小时 | 合计 | |
男生 | |||
女生 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为学生使用手机的时间长短与性别有关?
(2)在这名女生中,调查小组发现共有人使用国产手机,在这人中,平均每天使用手机不超过小时的共有人.从平均每天使用手机超过小时的女生中任意选取人,求这人中使用非国产手机的人数的分布列和数学期望.
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若曲线在点处的切线与直线垂直,求函数的极值;
(2)设函数.当=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com