精英家教网 > 高中数学 > 题目详情

【题目】如图,正四棱锥 中底面边长为,侧棱PA与底面ABCD所成角的正切值为

(I)求正四棱锥 的外接球半径;

(II)若 中点,求异面直线 所成角的正切值.

【答案】(1);(2).

【解析】试题分析:(1)连结 交于点,连结,则,利用侧棱与底面所成角的正切值为,可得,利用勾股定理建立方程,求出;(2)容易证明以,可得就是异面直线所成的角,在中求解.

试题解析:(1)连结 交于点,连结,则

就是与底面所成的角,

, 又,则

为外接球球心,连,易知,设,则, ∴

∴正四棱锥的外接球半径为

(2)连结,由于中点, 中点,所以

就是异面直线所成的角.

中, ,∴

可知, 所以

中,

即异面直线PDAE所成角的正切值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为正方形,⊥底面分别是的中点,.

(Ⅰ)求证∥平面

(Ⅱ)求直线与平面所成的角;

(Ⅲ)求四棱锥的外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片。当初向各地作了广告推广,同时广告对销售收益也有影响。在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;

(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,并将各地销售收益的平均值(以各组的区间中点值代表该组的取值);

(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:百万元)

2

3

2

7

表中的数据显示,之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求过点且在两个坐标轴上截距相等的直线方程。

(2)已知圆心为的圆经过点,且圆心在直线上,求圆心为的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=9A(-5,0)直线l:x-2y=0.

(1)求与圆C相切且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点)存在定点B(不同于点A)满足:对于圆C上任一点P都有一常数,试求所有满足条件的点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求曲线处的切线方程;

(2)讨论方程根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)对于曲线上的不同两点,如果存在曲线上的点,且使得曲线在点处的切线,则称为弦的伴随直线,特别地,当时,又称—伴随直线.

①求证:曲线的任意一条弦均有伴随直线,并且伴随直线是唯一的;

②是否存在曲线,使得曲线的任意一条弦均有—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

(1函数上的偶函数为事件,求事件的概率;

(2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

讨论的单调性;

存在两个极值点,求的取值范围.

查看答案和解析>>

同步练习册答案