精英家教网 > 高中数学 > 题目详情
20.如图,PM是圆O的切线,M为切点,PAB是圆的割线,AD∥PM,点D在圆上,AD与MB交于点C.若AB=6,BC=4,AC=3,则CD等于(  )
A.$\frac{16}{9}$B.$\frac{4}{3}$C.$\frac{9}{16}$D.$\frac{3}{4}$

分析 证明△BMA∽△AMC,得出MC=$\frac{4}{3}$,再利用相交弦定理,求出CD.

解答 解:由题意,连接AM,
∵PM是圆O的切线,M为切点,
∴∠PMA=∠PBM,
∵AD∥PM,
∴∠PMA=∠MAC,
∴∠MAC=∠ABM,
∵∠AMB=∠CMA,
∴△BMA∽△AMC,
∴$\frac{BM}{AM}=\frac{MA}{MC}$=$\frac{BA}{AC}$,
∵AB=6,AC=3,
∴BM=2AM,AM=2MC,
∴BM=4MC,
∴4+MC=4MC,
∴MC=$\frac{4}{3}$.
由相交弦定理可得3CD=$\frac{4}{3}×4$,
∴CD=$\frac{16}{9}$.
故选:A.

点评 本题考查三角形相似的判定与性质,考查相交弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为了解某地房价环比(所谓环比,简单说就是与相连的上一期相比)涨幅情况,如表记录了某年1月到5月的月份x(单位:月)与当月上涨的百比率y之间的关系:
时间x12345
上涨率y0.10.20.30.30.1
(1)根据如表提供的数据,求y关于x的线性回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)预测该地6月份上涨的百分率是多少?
(参考公式:用最小二乘法求线性回归方程系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在锐角三角形ABC中,AB=AC,以AB为直径的圆O与边BC,AC另外的交点分别为D,E,且DF⊥AC于F.
(Ⅰ)求证:DF是⊙O的切线;
(Ⅱ)若CD=3,$EA=\frac{7}{5}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正三棱锥S-ABC的底面边长为a,侧棱与底面所成的角为60°,则此棱锥的高为a;侧棱长为$\frac{2\sqrt{3}}{3}$a;侧面与底面所成的角arctan2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2AF=2AD,∠BAF=60°.
(1)求证:平面ADF⊥平面ABEF.
(2)求直线CF与平面ADF所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,已知三点P(2$\sqrt{3}$,2),Q(4,-4),R(6,0).
(1)将P、Q、R三点的直角坐标化为极坐标;
(2)求△PQR的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2bx-3b+1,在(-1,1)上存在零点,实数b的取值范围是($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式组$\left\{\begin{array}{l}{-1<x<3}\\{x>a}\end{array}\right.$的解为-1<x<3.则a的取值范围是a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆的中心在原点,对称轴为坐标轴,离心率e=$\frac{1}{2}$,且它的一个焦点在抛物线y2=-4x的准线上,则此椭圆的标准方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{8}$+$\frac{y^2}{6}$=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

同步练习册答案