精英家教网 > 高中数学 > 题目详情
19.求证:曲线y=$\frac{{a}^{2}}{x}$(a为非零常数)上任何一点处的切线与坐标轴围成的三角形的面积为定值.

分析 求出函数的导数,求出切线的斜率,求出切线方程,求出x,y轴上的截距,运用三角形的面积公式,即可得证.

解答 证明:曲线y=$\frac{{a}^{2}}{x}$的导数为y′=-$\frac{{a}^{2}}{{x}^{2}}$,
在任一点(x0,y0)处的切线斜率为-$\frac{{a}^{2}}{{{x}_{0}}^{2}}$,
切点为(x0,$\frac{{a}^{2}}{{x}_{0}}$),
则有切线方程:y-$\frac{{a}^{2}}{{x}_{0}}$=-$\frac{{a}^{2}}{{{x}_{0}}^{2}}$(x-x0),
由x=0得,y=$\frac{2{a}^{2}}{{x}_{0}}$,
再由y=0,得,x=2x0
则与两坐标轴围成的三角形面积是:$\frac{1}{2}$|2x0•$\frac{2{a}^{2}}{{x}_{0}}$|=2a2为定值.

点评 本题考查导数的运用:求切线方程,考查直线方程的点斜式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.集合{y∈Z|1<y≤5}的子集个数是(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.f(x)=$\frac{lnx}{x}$的极大值是(  )
A.eB.$\frac{1}{e}$C.-eD.-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=log2$\frac{2{x}^{2}}{{x}^{2}+1}$(x>0),若函数g(x)=|f(x)|2+m|f(x)|+2m+3有三个零点,则实数m的最大值为(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在正方体ABCD-A1B1C1D1中,找出二面角D1-BC-D的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=e2x的图象上的点到直线2x-y-4=0的距离的最小值是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(-1,2),B(3,-1).则与向量$\overrightarrow{AB}$同方向的单位向量($\frac{4}{5},-\frac{3}{5}$)或($-\frac{4}{5},\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若cosAcosB=-cos2$\frac{C}{2}$+1,则△ABC一定是(  )
A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列函数的奇偶性:
(1)f(x)=5x+1;     
(2)f(x)=-$\frac{2}{{x}^{2}}$+1.

查看答案和解析>>

同步练习册答案