精英家教网 > 高中数学 > 题目详情
17.已知:f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],且a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定义证明函数f(x)在[-1,1]上是增函数;
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1对所有x∈[-1,1]恒成立,求:实数m的取值范围.

分析 (Ⅰ)设任意x1,x2∈[-1,1],且x1<x2,由奇函数的性质化简f(x2)-f(x1),由$\frac{f(a)+f(b)}{a+b}>0$得$\frac{{f({x_2})+f(-{x_1})}}{{{x_2}+(-{x_1})}}>0$,判断出符号后,由函数单调性的定义证明结论成立;
(Ⅱ)根据函数的单调性和定义域列出不等式,求出不等式的解集;
(Ⅲ)由函数的单调性求出f(x)的最大值,由恒成立列出不等式,求出实数m的取值范围.

解答 证明:(Ⅰ)设任意x1,x2∈[-1,1],且x1<x2
∵f(x)是定义在[-1,1]上的奇函数,
∴f(x2)-f(x1)=f(x2)+f(-x1
∵x1<x2,∴x2+(-x1)≠0,
由题意知,$\frac{f(a)+f(b)}{a+b}>0$,则$\frac{{f({x_2})+f(-{x_1})}}{{{x_2}+(-{x_1})}}>0$,
∵x2+(-x1)=x2-x1>0,
∴f(x2)+f(-x1)>0,即f(x2)>f(x1),
∴函数f(x)在[-1,1]上是增函数.…(5分)
解:(Ⅱ)由(Ⅰ)和不等式$f(x+\frac{1}{2})<f(1-x)$得,
$\left\{\begin{array}{l}-1≤x+\frac{1}{2}≤1\\-1≤1-x≤1\\ x+\frac{1}{2}<1-x\end{array}\right.$,解得$0≤x<\frac{1}{4}$,
∴不等式的解集是[0,$\frac{1}{4}$)…(9分)
(Ⅲ)由(Ⅰ)得,f(x)最大值为f(1)=1,
所以要使f(x)≤m2-2m+1对所有x∈[-1,1],
只需1≤m2-2m+1恒成立,解得m≤0或m≥2,
得实数m的取值范围为m≤0或m≥2.…(14分)

点评 本题考查定义法证明抽象函数的单调性,奇函数的性质,以及恒成立问题转化为求最值,考查转化思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知抛物线E:y2=2px(p>0)的焦点F,E上一点(3,m)到焦点的距离为4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过F作直线l,交抛物线E于A,B两点,若直线AB中点的纵坐标为-1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列各式的值:
(Ⅰ)$|{1+lg0.001}|+\sqrt{{{lg}^2}\frac{1}{3}-4lg3+4}+lg6-lg0.02$.
(Ⅱ)${(-\frac{27}{8})^{-\frac{2}{3}}}+{0.002^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{(2-\sqrt{3})^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“数列{an}既是等差数列又是等比数列”是“数列{an}是常数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x∈Z|-1≤x≤2},B={y|y=2x},则A∩B=(  )
A.B.[0,2]C.(0,2]D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=lnx+ax2-2在区间($\frac{1}{2}$,2)内存在单调递增区间,则实数a的取值范围是(  )
A.(-∞,-2]B.(-$\frac{1}{8}$,+∞)C.(-2,-$\frac{1}{8}$)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知空间几何体ABCDEF中,四边形ABCD是正方形,AF⊥平面ABCD,BE⊥平面ABCD,AB=AF=2BE.
(Ⅰ)求证:BD∥平面CEF;
(Ⅱ)求CF与平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在矩形ABCD中,以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.已知点B的坐标为(3,2),E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.
(1)求证:EG⊥BF;
(2)求⊙H的方程.

查看答案和解析>>

同步练习册答案