精英家教网 > 高中数学 > 题目详情
(1)求函数在x=1处的导数;
(2)求函数y=x2+ax+b(a、b为常数)的导数.
【答案】分析:(1)要求函数在x=1处的导数,先求出y的导函数,然后把x=1代入即可;
(2)因为a、b为常数,直接利用求导法则求出即可.
解答:解:(1)已知y=,所以y′=,当x=1时,y′=
(2)函数y=x2+ax+b其中a和b为常数,所以y′=2x+a
点评:此题考查学生掌握求函数导数的能力,要求学生必须熟悉求导法则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c满足:f(-
1
4
+x)=f(-
1
4
-x)
,且方程f(x)=2x的两根为-1和
3
2

(1)求函数y=(
1
3
)f(x)
的单调减区间;
(2)设g(x)=f(x)-mx(m∈R),若g(x)在x∈[-1,+∞)上的最小值为-4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2x3-3x2-12x+8.
(Ⅰ)求函数在x=1处的切线方程;
(Ⅱ)求函数在区间[-2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=(x-a)2ex(a≠0).
(1)求函数f(x)的单调区间;
(2)设函数g(x)=f'(x)-f(x),若函数g(x)在x=a处的切线与x轴交于A点.与y轴交于B点,求△ABO的面积.

查看答案和解析>>

同步练习册答案