精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,角ABC的对边分别是abc,向量m=(2b,1),n=(2ac,cos C),且mn.(1)若b2ac,试判断△ABC的形状;(2)求y=1-的值域.

【答案】1ABC为等边三角形2(1 ]

【解析】试题分析:(1)先根据向量平行得边角关系,再根据正弦定理得角的关系,利用三角形内角关系可得2cos B=1,即得B,根据余弦定理以及b2ac,化简可得ac,即得三角形形状(2)先根据二倍角公式化简函数为基本三角函数形式,再根据A角范围以及正弦函数形状确定函数值域

试题解析:解:(1)由已知,mn,则2bcos C=2ac

由正弦定理,得2sin Bcos C=2sin(BC)-sin C

即2sin Bcos C=2sin Bcos C+2cos Bsin C-sin C.

在△ABC中,sin C≠0,因而2cos B=1,则B.

b2acb2a2c2-2accos B

因而aca2c2-2accos,即(ac)2=0,

所以ac,△ABC为等边三角形.

(2)y=1-

=1-

=1-2cos A(cos A-sin A)

=sin 2A-cos 2A

sin,其中A.

因而所求函数的值域为(-1, ]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求证

(2)对任意,存在,使成立,求的取值范围.(其中是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 的值的一个程序框图,判断其中框内应填入的条件是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,
①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在体积为72的直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AA1=12.

(1)求角∠BAC的大小;
(2)若该三棱柱的六个顶点都在球O的球面上,求球O的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1. (Ⅰ)当k=﹣2时,求函数h(x)=f(x)+g(x)的定义域;
(Ⅱ)若函数H(x)=f(x)﹣g(x)是奇函数(不为常函数),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,G1 , G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(

A.相交
B.平行
C.异面
D.以上都有可能

查看答案和解析>>

同步练习册答案