精英家教网 > 高中数学 > 题目详情

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.

(1);(2)

解析试题分析:(1)由于△沿线段折起到△的过程中,平面平面始终成立.所以平面.又因为,正方形的边长为,点分别在边上,.即可求得结论.
(2)因为线段上是否存在一点,使得平面,即相当于过点B作一个平面平行于平面.故只需OM平行于即可.

试题解析:(1)连接,设
是正方形,
的中点,且,从而有
所以平面,从而平面平面,           2分
过点垂直且与相交于点,则平面      3分
因为正方形的边长为
得到:
所以
所以
所以五棱锥的体积;      6分
(2)线段上存在点,使得平面.     7分
证明:
所以,所以平面,                 9分
,所以平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,直角梯形中,分别为边上的点,且.将四边形沿折起成如图2的位置,使

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.                    
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为正方形,
平面,已知为线段的中点.
(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的体积与侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

菱形的边长为3,交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,

(1)求证:平面平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.

查看答案和解析>>

同步练习册答案