分析 由题意,圆的位置不影响向量的大小,可设$\overrightarrow{CT}$=(2cosθ,2sinθ),$\overrightarrow{CM}$=(2cosα,2sinα),$\overrightarrow{CN}$=(2cosβ,2sinβ),利用$\overrightarrow{CT}$=a$\overrightarrow{CM}$+b$\overrightarrow{CN}$,可得cosθ=acosα+bcosβ,sinθ=asinα+bsinβ,平方相加,可35得a+b>1,利用a3+ab2=a(a2+b2)=a[1-2abcos(α-β)]>a(1-2ab),即可得出结论.
解答 解:由题意,圆的位置不影响向量的大小,
可设$\overrightarrow{CT}$=(2cosθ,2sinθ),$\overrightarrow{CM}$=(2cosα,2sinα),$\overrightarrow{CN}$=(2cosβ,2sinβ),
∵$\overrightarrow{CT}$=a$\overrightarrow{CM}$+b$\overrightarrow{CN}$,
∴cosθ=acosα+bcosβ,sinθ=asinα+bsinβ,
平方相加,可得1=a2+b2+2abcos(α-β)<(a+b)2,
∴a+b>1,
∴a3+ab2=a(a2+b2)=a[1-2abcos(α-β)]>a(1-2ab),
∴$\frac{{a}^{3}+a{b}^{2}+2ab+b+1}{a}$>$\frac{a-2{a}^{2}b+2ab+b+1}{a}$>$\frac{2}{a}$>2,
∴$\frac{{a}^{3}+a{b}^{2}+2ab+b+1}{a}$的取值范围为(2,+∞).
故答案为:(2,+∞).
点评 本题考查向量知识的运用,考查学生转化问题的能力,有难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x=$\frac{π}{12}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2+2$\sqrt{5}$+$\sqrt{14}$ | B. | 16+2$\sqrt{14}$ | C. | 8+2$\sqrt{14}$ | D. | 8+$\sqrt{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com