精英家教网 > 高中数学 > 题目详情

    如图,已知直三棱柱ABCA1B1C1中,ACBC,侧面BCC1B1是边长为a的正方形,DE分别是B1C1BB1的中点.

   (1)试过ACD三点作出该三棱柱的截面,并说明理由;

    (2)求证:C1E⊥截面ACD

    (3)求点B1到截面ACD的距离.

 

答案:
解析:

答案:(1)解:取A1B1中点F,连DFAF,由题设DFA1C1AC

    ACDF四点共面,∴截面是ACDF.

    (2)证明:

   

    C1EAC.

    DEB1C1BB1中点

    C1E⊥截面ACD.

    (3)解:延长AFCDBB1,易证它们交于一点G,由(2)C1E⊥截面ACD,又C1E
提示:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(1)求证:CF⊥平面ABB1
(2)当E是棱CC1中点时,求证:CF∥平面AEB1
(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

同步练习册答案