精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
4
-y2=1的左右焦点为F1、F2,点P为左支上一点,且满足∠F1PF2=60°,则△F1PF2的面积为(  )
A、
3
B、
3
3
C、
3
2
D、D、2
3
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由题意可得 F2(0,
5
),F1 (0,-
5
),由余弦定理可得 PF1•PF2=4,由S=
1
2
PF1•PF2sin60°,即可求得△F1PF2的面积.
解答: 解:由题意可得 F2
5
,0),F1 (-
5
,0),由余弦定理可得 
20=PF12+PF22-2PF1•PF2cos60°=(PF1-PF22+PF1•PF2=16+PF1•PF2
∴PF1•PF2=4.
S△F1PF2=
1
2
PF1•PF2sin60°=
1
2
×4×
3
2
=
3

故答案为:A.
点评:本题主要考察了双曲线的简单性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若0<a<b<1,则在ab,ba,logab,logba这四个数中最大的一个是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若∠AOB=∠A1O1B1且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是(  )
A、OB∥O1B1且方向相同
B、OB∥O1B1
C、OB与O1B1不平行
D、OB与O1B1不一定平行

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,
π
3
),则|CP|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PQ为半圆O的直径,A为以OQ为直径的半圆A的圆心,圆O的弦PN切圆A于点M,PN=8,则圆A的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,m>0,n>0.
(Ⅰ)证明:(m2+n4)(m4+n2)≥4m3n3
(Ⅱ)a2+b2=5,ma+nb=5,求证:m2+n2≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+b|.
(Ⅰ)若不等式f(x)≤3的解集是{x|-1≤x≤2},求实数b的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x+3)+f(x+1)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)•f(y).
(1)求f(0)的值;
(2)求证:对任意x∈R,都有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,满足f(x)+f(-x)=0,f(x-1)=f(x+1),当x∈[0,1)时,f(x)=3x-1,则f(log 
1
3
12)的值为(  )
A、-
11
12
B、-
1
4
C、-
1
3
D、
1
3

查看答案和解析>>

同步练习册答案