精英家教网 > 高中数学 > 题目详情
某同学回答“用数学归纳法证明<n+1(n∈N)”的过程如下:

证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有<k+1,那么当n=k+1时,(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(n∈N),命题都是正确的.以上证法是错误的,错误在于(    )

A.当n=1时,验证过程不具体

B.归纳假设的写法不正确

C.从k到k+1的推理不严密

D.从k到k+1的推理过程没有使用归纳假设

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于不等式
n2+n
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
12+1
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
k2+k
<k+1,则当n=k+1时,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法(  )
A、过程全部正确
B、n=1验得不正确
C、归纳假设不正确
D、从n=k到n=k+1的推理不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在观察正整数的前n项平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*时发现它的和为关于n的三次函数,于是他猜想:是否存在常数a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.对于一切n∈N*都立?
(1)若n=1,2 时猜想成立,求实数a,b的值.
(2)若该同学的猜想成立,请你用数学归纳法证明.若不成立,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学回答“用数学归纳法证明<n+1(n∈N)”的过程如下:

证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有<k+1,那么当n=k+1时,=(k+1)+1,所以当n=k+1时命题是正确的,由(1)(2)可知对于n∈N,命题都是正确的.以上证法是错误的,错误在于(    )

A.当n=1时,验证过程不具体

B.归纳假设的写法不正确

C.从k到k+1的推理不严密

D.从k到k+1的推理过程没有使用归纳假设

查看答案和解析>>

科目:高中数学 来源: 题型:

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:

(1)当n=1时,<1+1,不等式成立.

(2)假设当nk(k∈N*k≥1)时,不等式成立,即<k+1,则当nk+1时,<=(k+1)+1,

所以当nk+1时,不等式成立,则上述证法                    (  ).

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从nknk+1的推理不正确

查看答案和解析>>

同步练习册答案