精英家教网 > 高中数学 > 题目详情
3.如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:
①EP⊥AC;
②EP∥BD;
③EP∥面SBD;
④EP⊥面SAC,
其中恒成立的为(  )
A.①③B.③④C.①②D.②③④

分析 如图所示,连接AC、BD相交于点O,连接EM,EN.
(1)由正四棱锥S-ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP.
(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;
(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;
(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直.

解答 解:如图所示,连接AC、BD相交于点O,连接EM,EN.
对于(1),由正四棱锥S-ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;
对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.
对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
故选:A.

点评 本题考查了空间线面、面面的位置关系判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.一个几何体的三视图如图所示:求这个几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,首项a1=0,公差d≠0,a1+a2+…+a7=ak,则k=(  )
A.10B.20C.23D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3},那么A的真子集的个数是(  )
A.8B.7C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC的三边a,b,c所对的角分别为A,B,C.若A:B=1:2,sinC=1,则a:b:c=(  )
A.1:2:1B.1:2:3C.2:$\sqrt{3}$:1D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sinx-2cosx,$x∈[-\frac{1}{2},1]$,g(x)=e1-2x
(1)求函数f(x)在x=0处的切线方程;
(2)求证:$x∈[-\frac{1}{2},1]$时,f(x)≥l(x)恒成立;
(3)求证:$x∈[-\frac{1}{2},1]$时,f(x)+g(x)≥0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:“$\frac{2{x}^{2}}{m}$+$\frac{{y}^{2}}{m-1}$=1是焦点在x轴上的椭圆的标准方程”,命题q:?x1∈R,8x12-8mx1+7m-6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,直线l:x-y+1=0交椭圆于A,B两点,交y轴于C点,若$3\overrightarrow{AB}=2\overrightarrow{BC}$,则椭圆的方程是x2+4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点(3,0)的l与圆x2+y2+x-6y+3=0相交于P,Q两点,且OP⊥OQ(O为原点),求l的方程.

查看答案和解析>>

同步练习册答案