精英家教网 > 高中数学 > 题目详情

【题目】己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1且t=﹣1时,解不等式f(x)≤g(x);
(3)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,2]上有零点,求t的取值范围.

【答案】解:(1)∵1是关于x的方程f(x)﹣g(x)=0的一个解,
∴loga2﹣2loga(2+t)=0,
∴2=(2+t)2
∴t=﹣2;
(2)当0<a<1且t=﹣1时,
不等式f(x)≤g(x)可化为
loga(x+1)≤2loga(2x﹣1),

解得,<x≤
(3)F(x)=af(x)+tx2﹣2t+1
=x+1+tx2﹣2t+1=tx2+x﹣2t+2,
令tx2+x﹣2t+2=0,
即t(x2﹣2)=﹣(x+2),
∵x∈(﹣1,2],∴x+2∈(1,4],
∴t≠0,x2﹣2≠0;
=﹣=﹣[(x+2)+]+4,
∵2≤(x+2)+
∴﹣≤﹣[(x+2)+]+4≤4﹣2
∴﹣≤4﹣2
∴t≤﹣2或t≥
【解析】(1)由题意得loga2﹣2loga(2+t)=0,从而解得.
(2)由题意得loga(x+1)≤2loga(2x﹣1),由对数函数的单调性可得 , 从而解得.
(3)化简F(x)=tx2+x﹣2t+2,从而令tx2+x﹣2t+2=0,讨论可得=﹣=﹣[(x+2)+]+4,从而解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组,第二组,…,第五组,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为.

(Ⅰ)求的值,并求这50名同学心率的平均值;

(Ⅱ)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中

心率小于60次/分

心率不小于60次/分

合计

体育生

20

艺术生

30

合计

50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax﹣a(其中a∈R,e是自然对数的底数,e=2.71828…).
(Ⅰ)当a=e时,求函数f(x)的极值;
(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象(  )

A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图AB是抛物线C:x2=4y过焦点F的弦(点A在第二象限),过点A的直线交抛物线于点E,交y轴于点D(D在F上方),且|AF|=|DF|,过点B作抛物线C的切线l
(1)求证:AE∥l;
(2)当以AE为直径的圆过点B时,求AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R.
(1)解关于x的不等式|x﹣1|+a﹣1>0(a∈R);
(2)记A为(1)中不等式的解集,B为不等式组 的整数解集,若(UA)∩B恰有三个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x| ≤0,x∈R},B={x||x﹣1|<2,x∈R}.
(1)求A,B;
(2)求B∩(UA).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知a,b为正整数,a≠b,x>0,y>0.试比较 + 的大小,并指出两式相等的条件.
(2)用(1)所得结论,求函数y= + ,x∈(0, )的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的前项和为,公比

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设 为{}的前项和,求

查看答案和解析>>

同步练习册答案