精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,,侧面为等边三角形,侧棱

(Ⅰ)求证:
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值

(Ⅰ)证明略
(Ⅱ)证明略
(Ⅲ)
解:(Ⅰ)设中点为,连结,………… 1分

,所以.
,所以.  ………………… 2分
,所以平面.
平面,所以.  ……… 4分
(Ⅱ)由已知
.
为正三角形,且,∴. …………………… 6分
,所以.
.
由(Ⅰ)知是二面角的平面角.
∴平面平面.       …………………………………………… 8分
(Ⅲ)方法1:由(Ⅱ)知平面.
,连结,则.
是二面角的平面角. ………………………………… 10分
中,易求得.
,所以.  ………………………… 12分
.
即二面角的余弦值为.  …………………………………… 13分
方法2:由(Ⅰ)(Ⅱ)知两两垂直.     ……………………… 9分
为原点建立如图所示的空间直角坐标系.

易知.
.  ……………………… 10分
设平面的法向量为

,则.
∴平面的一个法向量为.   ……………………… 11分
易知平面的一个法向量为.
. …………………………………… 12分
由图可知,二面角为锐角.
∴二面角的余弦值为. …………………………………… 13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥P—ABC中,已知点E,F,G分别是所在棱的中点,则下面结论中正确的是:     
①平面EFG//平面PBC
②平面EFG平面ABC
是直线EF与直线PC所成的角
是平面PAB与平面ABC所成二面角的平面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


如图,正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:

①直线AM与CC1是相交直线;  
②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱中,底面的菱形,,点在棱上,点是棱的中点.

(1)若的中点,求证:
(2)求出的长度,使得为直二面角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
在四棱锥P-ABCD中,底ABCD是矩形, PA⊥面ABCD, AP="AB=2," BC=, E、F、G分别为AD、PC、PD的中点.
(1)求证: FG∥面ABCD
(2)求面BEF与面BAP夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分14分)如图,正方体中,棱长为
(1)求直线所成的角;
(2)求直线与平面所成角的正切值;
(3)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,      
下列命题正确的是 (   )
A.若B.若,则
C.若D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图(1)已知矩形中,分别是的中点,点上,且,把沿着翻折,使点在平面上的射影恰为点(如图(2))。
(1)求证:平面平面
(2)求二面角的大小.

图(1)                    图(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E、F
分别为AC、BD的中点,则下列命题中正确的是           。(将正确的命题序号全填上)
①EF∥AB                                  ②EF与异面直线AC与BD都垂直
③当四面体ABCD的体积最大时,AC=     ④AC垂直于截面BDE

查看答案和解析>>

同步练习册答案