精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表数据:

单价x(元)

4

5

6

7

8

9

销量y(件)

90

84

83

80

75

68

由表中数据,求得线性回归方程为 =﹣4x+a.若在这些样本点中任取一点,则它在回归直线左下方的概率为 (
A.
B.
C.
D.

【答案】B
【解析】解: = (4+5+6+7+8+9)= = (90+84+83+80+75+68)=80 ∵ =﹣4x+a,
∴a=106,
∴回归直线方程 =﹣4x+106;
数据(4,90),(5,84),(6,83),(7,80),(8,75),(9,68).
6个点中有2个点在直线的下侧,即(5,84),(9,68).
则其这些样本点中任取1点,共有6种不同的取法,
其中这两点恰好在回归直线两侧的共有2种不同的取法,
故这点恰好在回归直线下方的概率P= =
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100110)[110120)[120130)[130140)[140150]分别加以统计,得到如图所示的频率分布直方图.

1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;

2)若规定分数不小于130分的学生为数学尖子生,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为数学尖子生与性别有关

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)和g(x),其各自导函数f′(x)f和g′(x)的图象如图所示,则函数F(x)=f(x)﹣g(x)极值点的情况是(
A.只有三个极大值点,无极小值点
B.有两个极大值点,一个极小值点
C.有一个极大值点,两个极小值点
D.无极大值点,只有三个极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=etx1﹣tlnx,(t>0)
(Ⅰ)若t=1,证明x=1是函数f(x)的极小值点;
(Ⅱ)求证:f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c.
(1)若a=2 ,A= ,且△ABC的面积S=2 ,求b,c的值;
(2)若sin(C﹣B)=sin2B﹣sinA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,若A,B,C是锐角△ABC的三个内角,,则 的夹角为(
A.锐角
B.直角
C.钝角
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求曲线在点处的切线方程

(Ⅱ)求证:

(Ⅲ)判断曲线是否位于轴下方,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门从企业生产的产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图的频率分布直方图,质量指标值落在区间内的频率之比为.

(Ⅰ)求这些产品质量指标值落在区间内的频率;

(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,g(x)= ,若方程f(x)=g(x)﹣a有且只有一个实数根,则实数a的取值集合为

查看答案和解析>>

同步练习册答案