精英家教网 > 高中数学 > 题目详情
正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(    )
A.75°B.60°C.45°D.30°
C

试题分析:如图,四棱锥P-ABCD中,过P作PO⊥平面ABCD于O,连接AO,则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,

∵AO=,PA=1,∴cos∠PAO=,.∴∠PAO=45°,即所求线面角为45°.故答案为C.
点评:本题考查棱锥的结构特征,以及求直线和平面成的角的方法,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△ 分别沿折起,使两点重合于点,连接.

(1)求证:;     (2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,侧棱底面,

(Ⅰ)求证:平面
(Ⅱ)若直线与平面所成角的正弦值为,求的值
(Ⅲ)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式。(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的直线和不重合的平面,下列命题错误的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:正方体的棱长为1,点分别是的中点

(1)求证: 
(2)求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,是边长为2的正三角形,平面ABC,平面平面ABC,BD=CD,且

(1)若AE=2,求证:AC∥平面BDE;
(2)若二面角A—DE—B为60°.求AE的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线a,b,c及平面a,b,γ,有下列四个命题:
①.若;②。若
③.若,则;       ④。若,则
其中正确的命题序号是                ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥,底面为边长为的正三角形,平面平面,上一点,为底面三角形中心.

(Ⅰ)求证∥面
(Ⅱ)求证:
(Ⅲ)设中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不同的直线,是两个不同的平面,则下列四个命题中是真命题的是(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案