精英家教网 > 高中数学 > 题目详情
7.设0<a<1,解关于x的不等式:$\frac{ax-1}{x-1}$>0.

分析 根据分式不等式的性质进行求解即可.

解答 解:∵$\frac{ax-1}{x-1}$>0,
∴不等式等价为(ax-1)(x-1)>0,
即a(x-$\frac{1}{a}$)(x-1)>0,
∵0<a<1,∴$\frac{1}{a}$>1,
则不等式的解为x>$\frac{1}{a}$或x<1,
即不等式的解集为{x|x>$\frac{1}{a}$或x<1}.

点评 本题主要考查不等式的求解,根据分式不等式的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:
(i)对任意的x∈[0,1],恒有f(x)≥0;
(ii)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
则下列三个函数中不是M函数的个数有(  )
①f(x)=x2  
②f(x)=x2+1
③f(x)=2x-1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求到两坐标轴距离之积等于2的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知奇函数f(x)在(0,+∞)上是增函数,且f(2)=0,则不等式x[f(x)-f(-x)]<0的解集为(  )
A.{x|-2<x<0或x>2}B.{x|x<-2或0<x<2}C.{x|x<-2或x>2}D.{x|-2<x<0或0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知二次函数y=ax2+2bx的图象如图所示,则$\root{4}{(a-b)^{4}}$的值为(  )
A.a+bB.-(a+b)C.a-bD.b-a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直角三角形ABC的三边之和为2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a,b,c都是正整数,且3a=4b=6c,证明:$\frac{2}{a}$+$\frac{1}{b}$=$\frac{2}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥1}\\{2x,x<1}\end{array}\right.$,求f(-2),f(2),f(1+x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线C以双曲线$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}$=1的右焦点F为焦点,曲线C上的点到焦点F的距离与到直线x=-2的距离相等,则曲线C上的任意一点P到y轴的距离与到直线x-y+4=0的距离和的最小值为(  )
A.3$\sqrt{2}$B.3$\sqrt{2}$-1C.3$\sqrt{2}$+2D.3$\sqrt{2}$-2

查看答案和解析>>

同步练习册答案