精英家教网 > 高中数学 > 题目详情
17.指数函数y=ax-1+1的反函数的图象过定点(2,1).

分析 根据题意,对所给的函数变形可得y-1=ax-1,分析可得其反函数为y=loga(x-1)+1,(x>1);由对数函数的性质分析可得其过定点的坐标,即可得答案.

解答 解:根据题意,对于指数函数y=ax-1+1,变形可得y-1=ax-1
则有x-1=loga(y-1),
即其的反函数为y=loga(x-1)+1,(x>1),
分析可得x-1=1时,即x=2时,y=1;
即函数y=loga(x-1)+1过定点(2,1);
故答案为:(2,1).

点评 本题考查对数函数的性质,关键是求出指数函数y=ax-1+1的反函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x+1)=x2,则f(3)=(  )
A.9B.16C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(Ⅱ)已知数列{bn}的前n项和为Sn,且对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,证明:$\frac{1}{2}$≤Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.平行于同一向量的两个向量是共线向量
B.单位向量都相等
C.$\overrightarrow{a}$∥$\overrightarrow{b}$?存在唯一的实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$
D.与非零向量$\overrightarrow{a}$相等的向量有无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某化工企业计划2015年底投入64万元,购入一套污水处理设备.该设备每年的运转费用是1.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.
(1)设该企业使用该设备x年的年平均污水处理费用为y(万元),求y=f(x)的解析式;
(2)为使该企业的年平均污水处理费用最低,问该企业几年后需要重新更换新的污水处理设备?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求与两定点A(-1,2),B(3,2)的距离的比为$\sqrt{2}$的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两个变量x,y的散点图与函数y=axb的图象近似,将函数y=axb作线性变换,再利用最小二乘法得到的回归方程为u=3+0.5v,若x=e2,则y的近似值为(  )
A.eB.e2C.e3D.e4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是等比数列,a3=4,且a3是a2+4与a4+14的等差中项;数列{bn}是等差数列,b2=16,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1).
(1)求数列{an}的通项公式:
(2)求数列{bn}的通项公式及λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为不共线向量,$\overrightarrow{OA}$=k$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=4$\overrightarrow{{e}_{1}}$+5$\overrightarrow{{e}_{2}}$,$\overrightarrow{OC}$=-k$\overrightarrow{{e}_{1}}$-10$\overrightarrow{{e}_{2}}$,且A、B、C三点共线,求k的值.

查看答案和解析>>

同步练习册答案