精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极小值10,则的值为__________

【答案】-2

【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,

∴f′(x)=3x2+2ax+b,

f(x)=x3+ax2+bx﹣a2﹣7ax=1处取得极小值10,

∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,

∴a2+8a+12=0,

∴a=﹣2,b=1a=﹣6,b=9.

a=﹣2,b=1时,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),

<x<1时,f′(x)<0,当x>1时,f′(x)>0,

∴f(x)在x=1处取得极小值,与题意符合;

a=﹣6,b=9时,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)

x<1时,f′(x)>0,当1<x<3时,f′(x)<0,

∴f(x)在x=1处取得极大值,与题意不符;

=﹣2,

故答案为:﹣2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,.

(1)求△ABM与△ABC的面积之比;

(2)若N为AB中点,交于点P,且 (x,y∈R),求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆N的标准方程为(x-5)2+(y-6)2a2(a>0).

(1)若点M(6,9)在圆上a的值

(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)设集合U=A∪B,求(CuA)∪(CuB)的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 )的离心率为,连接椭圆的四个顶点所形成的四边形面积为

1)求椭圆的标准方程;

2)若椭圆上点到定点)的距离的最小值为1,求的值及点的坐标;

3)如图,过椭圆的下顶点作两条互相垂直的直线,分别交椭圆于点 ,设直线的斜率为,直线 分别与直线 交于点 .记 的面积分别为 ,是否存在直线,使得?若存在,求出所有直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x+1)e2x , g(x)=aln(x+1)+ x2+(3﹣a)x+a(a∈R).
(1)当a=9,求函数y=g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且anan+1=2n , n∈N* , 则数列{an}的通项公式为(
A.an=( n1
B.an=( n
C.an=
D.an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,点,点在线段的中垂线上.

1)求椭圆的方程;

2)设直线与椭圆交于两点,直线的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

同步练习册答案