精英家教网 > 高中数学 > 题目详情
1.如图,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,则$\overrightarrow{AC}$•$\overrightarrow{AD}$=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.-2$\sqrt{3}$

分析 由题意利用两个向量垂直的性质、两个向量的加减法的法则,以及其几何意义,把要求的式子化为2$\sqrt{3}$${\overrightarrow{AD}}^{2}$-2$\sqrt{3}$$\overrightarrow{AB}•\overrightarrow{AD}$,计算求的结果.

解答 解:在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,
则$\overrightarrow{AC}$•$\overrightarrow{AD}$=($\overrightarrow{AB}$+$\overrightarrow{BC}$)•$\overrightarrow{AD}$=$\overrightarrow{AB}•\overrightarrow{AD}$+$\overrightarrow{BC}•\overrightarrow{AD}$=$\overrightarrow{BC}•\overrightarrow{AD}$
=0+2$\sqrt{3}$$\overrightarrow{BD}$•$\overrightarrow{AD}$=2$\sqrt{3}$($\overrightarrow{AD}$-$\overrightarrow{AB}$)•$\overrightarrow{AD}$
=2$\sqrt{3}$${\overrightarrow{AD}}^{2}$-2$\sqrt{3}$$\overrightarrow{AB}•\overrightarrow{AD}$=2$\sqrt{3}$•1-0=2$\sqrt{3}$,
故选:A.

点评 本题考查了平面向量数量积的运算,两条直线直线垂直,则两直线上的向量也垂直,等价于两向量的数量积为0,解题中还运用了向量的模的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π).
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若β∈(0,$\frac{π}{2}$),且cos(α-β)=$\frac{1}{3}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=$\sqrt{7}$,3sinA=$\sqrt{7}$sinB,cosC=$\frac{2\sqrt{7}}{7}$,则边c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC的外接圆的圆心为O,半径为2,且$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,则向量$\overrightarrow{CA}$在向量$\overrightarrow{CB}$方向上的投影为(  )
A.3B.$\sqrt{3}$C.-3D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁UB)为(  )
A.{1,4,6}B.{2,4,6}C.{2,4}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,则f(f($\frac{1}{8}$))=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:任意x∈R,sinx≤1,则(  )
A.¬p:存在x∈R,sinx≥1B.¬p:任意x∈R,sinx≥1
C.¬p:存在x∈R,sinx>1D.¬p:任意x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=n2-n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)若cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案