精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点的切线方程为.

1)求实数的值,并求的极值.

2)是否存在,使得对任意恒成立?若存在,求出的最小值;若不存在,请说明理由.

【答案】1,无极小值.2)存在,3

【解析】

1)由求导公式求出导数,再由切线的方程得,列出方程求出的值,代入函数解析式和导数,分别求出对应的的范围,即求出函数的单调区间;

2)先将分离出,构造函数,再求出此函数的导数并化简,再构造函数并二次求导,通过特殊函数值的符号,确定函数零点所在的区间,列出表格判断出的单调性,从而求出的最大值,再由自变量的范围确定出的最大值的范围,从而求出满足条件的的最小值.

1)依题意,,所以

又由切线方程可得,即,解得,所以

所以,令,解得

时,的的变化情况如下:

+

0

-

极大值

所以,无极小值.

2)若对任意恒成立,则

,只需.

,则,所以上单调递减.

所以存在唯一,使得,即

时,的变化情况如下:

+

0

-

+

0

-

极大值

所以,又因为

所以

所以

因为,所以,所以,又

所以,因为,即,且

的最小整数值为3.

所以存在最小整数,使得对任意恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

已知是递增数列,其前项和为,且

)求数列的通项

)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;

)设,若对于任意的,不等式

恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当,求的单调区间;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为,第2组成绩为,第3组成绩为,第4组成绩为,第5组成绩为,样本频率分布直方图如下:

1)估计全体考生成绩的中位数;

2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第345组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

附:

0.050

0.010

0.001

3.841

6.635

10.828

则下列说法正确的是(

A.以上的把握认为爱好该项运动与性别无关

B.以上的把握认为爱好该项运动与性别无关

C.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直角中,为直角,分别为的中点,将沿折起,使点到达点的位置,连接的中点.

(Ⅰ)证明:

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每年定期对职工进行培训以提高工人的生产能力(生产能力是指一天加工的零件数).现有两类培训,为了比较哪类培训更有利于提高工人的生产能力,工厂决定从同一车间随机抽取100名工人平均分成两个小组分别参加这两类培训.培训后测试各组工人的生产能力得到如下频率分布直方图.

(1)记表示事件“参加类培训工人的生产能力不低于130件”,估计事件的概率;

(2)填写下面列联表,并根据列联表判断是否有的把握认为工人的生产能力与培训类有关:

生产能力

生产能力

总计

类培训

50

类培训

50

总计

100

(3)根据频率分布直方图,判断哪类培训更有利于提高工人的生产能力,请说明理由.

参考数据

0.15

0.10

0.050

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥的轴截面为等腰为底面圆周上一点。

(1)若的中点为,求证: 平面

(2)如果,求此圆锥的体积;

(3)若二面角大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面ABCDE分别是的中点.

(Ⅰ)求证:

(Ⅱ)求二面角的大小;

(Ⅲ)线段上是否存在点F,使平面?若存在,求的值:若不存在,说明理由.

查看答案和解析>>

同步练习册答案