精英家教网 > 高中数学 > 题目详情
过定点P(1,2)的直线在x轴与y轴的正半轴上的截距分别为a、b,则4a2+b2的最小值为(  )
A、8B、32C、45D、72
分析:由过定点P(1,2)的直线在x轴与y轴的正半轴上的截距分别为a、b,可得a,b的一个方程,再应用基本不等式求得4a2+b2的最小值.
解答:解:∵a>0,b>0,
1
a
+
2
b
=1

∴(2a+b)•1=(2a+b)(
1
a
+
2
b
)

=2+2+
b
a
+
4a
b
≥8

当且仅当
b
a
=
4a
b
,即2a=b=4时成立
∴2(4a2+b2)≥(2a+b)2≥64,
∴4a2+b2≥32当且仅当
2a
1
=
b
1
=4
时成立
∴(4a2+b2)min=32
故选B
点评:考查对于含有限制条件,应用基本不等式求最值的方法,注意“1”的代换,体现了整体思想.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过定点P(1,2)的直线在x轴与y轴正半轴上的截距分别为a、b,则4a2+b2的最小值为
 

查看答案和解析>>

科目:高中数学 来源:2011--2012学年湖北省高三八月份月考试卷理科数学 题型:选择题

过定点P(1,2)的直线在轴与轴正半轴上的截距分别为,则的最小值为                            (    )

A.8                               B.32                      C.45                      D.72

 

查看答案和解析>>

科目:高中数学 来源:《第1讲 坐标系》、《第2讲 参数方程》2011年单元测试卷(骆驼坳中学)(解析版) 题型:选择题

过定点P(1,2)的直线在x轴与y轴的正半轴上的截距分别为a、b,则4a2+b2的最小值为( )
A.8
B.32
C.45
D.72

查看答案和解析>>

科目:高中数学 来源:2011年江苏省重点中学高考数学一轮复习课时练精品:5-8 (解析版) 题型:解答题

过定点P(1,2)的直线在x轴与y轴正半轴上的截距分别为a、b,则4a2+b2的最小值为   

查看答案和解析>>

同步练习册答案