精英家教网 > 高中数学 > 题目详情

【题目】已知某市年全社会固定资产投资以及增长率如图所示,则下列说法错误的是(

A.2013年到2019年全社会固定资产的投资处于不断增长的状态

B.2013年到2019年全社会固定资产投资的平均值为亿元

C.该市全社会固定资产投资增长率最高的年份为2014

D.2016年到2017年全社会固定资产的增长率为0

【答案】D

【解析】

2013年到2019年全社会固定资产的投资数额,可得判定A项正确;由平均数的计算公式,可得B项正确;由2014年的全社会固定资产投资增长率为,可得C项正确;由2016年和2017年全社会固定资产投资的增长率呈现增长趋势,可得D项错误.

由题意,从2013年到2019年全社会固定资产的投资分别为,所以A项正确;

因为,所以B项正确;

2014年的全社会固定资产投资增长率为,为2013年到2019年的最大值,故C项正确;

2016年和2017年全社会固定资产投资的增长率均为,均呈现增长趋势,故D项错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标中,圆,圆

()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示)

()求圆的公共弦的参数方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新冠病毒肆虐全球的大灾难面前,中国全民抗疫,众志成城,取得了阶段性胜利,为世界彰显了榜样力量.为庆祝战疫成功并且尽快恢复经济,某网络平台的商家进行有奖促销活动,顾客购物消费每满600元,可选择直接返回60元现金或参加一次答题返现,答题返现规则如下:电脑从题库中随机选出一题目让顾客限时作答,假设顾客答对的概率都是0.4,若答对题目就可获得120元返现奖励,若答错,则没有返现.假设顾客答题的结果相互独立.

1)若某顾客购物消费1800元,作为网络平台的商家,通过返现的期望进行判断,是希望顾客直接选择返回180元现金,还是选择参加3次答题返现?

2)若某顾客购物消费7200元并且都选择参加答题返现,请计算该顾客答对多少次概率最大,最有可能返回多少现金?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人进行一次象棋比赛,每局胜者得1分,负者得0分(无平局),约定一方得4分时就获得本次比赛的胜利并且比赛结束,设在每局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,已知前3局中,甲得1分,乙得2.

1)求甲获得这次比赛胜利的概率;

2)设表示从第4局开始到比赛结束所进行的局数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角所对的边分别为,且函数的部分图象如图所示:

1)求的大小;

2)若,点为线段上的点,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1ρ2cosθ和曲线C2ρcosθ3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.

1)求曲线C1和曲线C2的直角坐标方程;

2)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

同步练习册答案