【题目】已知某市年全社会固定资产投资以及增长率如图所示,则下列说法错误的是( )
A.从2013年到2019年全社会固定资产的投资处于不断增长的状态
B.从2013年到2019年全社会固定资产投资的平均值为亿元
C.该市全社会固定资产投资增长率最高的年份为2014年
D.2016年到2017年全社会固定资产的增长率为0
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.例如:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标中,圆,圆。
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示);
(Ⅱ)求圆的公共弦的参数方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新冠病毒肆虐全球的大灾难面前,中国全民抗疫,众志成城,取得了阶段性胜利,为世界彰显了榜样力量.为庆祝战疫成功并且尽快恢复经济,某网络平台的商家进行有奖促销活动,顾客购物消费每满600元,可选择直接返回60元现金或参加一次答题返现,答题返现规则如下:电脑从题库中随机选出一题目让顾客限时作答,假设顾客答对的概率都是0.4,若答对题目就可获得120元返现奖励,若答错,则没有返现.假设顾客答题的结果相互独立.
(1)若某顾客购物消费1800元,作为网络平台的商家,通过返现的期望进行判断,是希望顾客直接选择返回180元现金,还是选择参加3次答题返现?
(2)若某顾客购物消费7200元并且都选择参加答题返现,请计算该顾客答对多少次概率最大,最有可能返回多少现金?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙二人进行一次象棋比赛,每局胜者得1分,负者得0分(无平局),约定一方得4分时就获得本次比赛的胜利并且比赛结束,设在每局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,已知前3局中,甲得1分,乙得2分.
(1)求甲获得这次比赛胜利的概率;
(2)设表示从第4局开始到比赛结束所进行的局数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(1)求曲线C1和曲线C2的直角坐标方程;
(2)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ) =0,M为l3与C的交点,求M的极径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com