精英家教网 > 高中数学 > 题目详情
10.已知等比数列{an}的前n项和为Sn,且5S1,2S2,S3成等差数列.
(1)求{an}的公比q;
(2)当a1-a3=3时,证明:数列{Sn-1}也是等比数列.

分析 (1)由5S1,2S2,S3成等差数列,可得4S2=S3+5S1,化为q2-3q+2=0,解得q.
(2)当a1-a3=3时,q≠1,可得:a1(1-22)=3,解得a1.求出Sn,证明当n≥2时,$\frac{{S}_{n}-1}{{S}_{n-1}-1}$=常数(非0)即可.

解答 (1)解:∵5S1,2S2,S3成等差数列,
∴4S2=S3+5S1,化为4a1(q+1)=${a}_{1}(1+q+{q}^{2}+5)$,
∴q2-3q+2=0,解得q=1或2.
(2)证明:当a1-a3=3时,q≠1,可得:a1(1-22)=3,解得a1=-1.
∴Sn=$\frac{-1({2}^{n}-1)}{2-1}$=1-2n
∴当n≥2时,$\frac{{S}_{n}-1}{{S}_{n-1}-1}$=$\frac{-{2}^{n}}{-{2}^{n-1}}$=2,
∴数列{Sn-1}也是等比数列,首项为-2,公比为2.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.用min{a,b}表示a,b两个数中的最小值,设f(x)=min{-x-2,x-4},则f(x)的最大值为(  )
A.-2B.-3C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线mx-2y-1=0经过第一、三、四象限,则实数m的取值范围是m>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的定义域为[-1,2],值域为[0,2],则函数f(x-2)的定义域为[1,4];值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=$\sqrt{\frac{1+x}{4-x}}$的定义域为集合A,函数g(x)=3x-a(x≤1)的值域为集合B
(1)求集合A,B;
(2)若全集U=R,集合A,B满足(∁UA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B所对的边分别为a,b,若a=3bsinA,则sinB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项的和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$(n=1,2,3,…)
(Ⅰ)求首项a1
(Ⅱ)证明数列{an+2n}是等比数列并求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某小型餐馆一天装要购买A,B两种蔬菜,A,B蔬菜每千克的单价分别为2元和3元,根据需要,A蔬菜至少要买6千克,B蔬菜至少要买4千克,而且一天中购买这两种蔬菜的总费用不能超过60元,如果这两种蔬菜加工后全部卖出,A,B两种蔬菜交工后每千克分别为2元和1元,则该餐馆的最大利润最大为52元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2-2x+alnx
(1)当a=2时,求函数f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)存在两个极值点x1、x2(x1<x2),①求实数a的范围;②证明:$\frac{f{(x}_{1})}{{x}_{2}}$>-$\frac{3}{2}$-ln2.

查看答案和解析>>

同步练习册答案